|
|
from transformers.trainer import * |
|
|
|
|
|
class DistributedTrainer(Trainer): |
|
|
def _inner_training_loop( |
|
|
self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None, ignore_keys_for_eval=None |
|
|
): |
|
|
self.accelerator.free_memory() |
|
|
self._train_batch_size = batch_size |
|
|
if self.args.auto_find_batch_size: |
|
|
if self.state.train_batch_size != self._train_batch_size: |
|
|
from accelerate.utils import release_memory |
|
|
|
|
|
(self.model_wrapped,) = release_memory(self.model_wrapped) |
|
|
self.model_wrapped = self.model |
|
|
|
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
|
|
|
|
original_bs = self.args.per_device_train_batch_size |
|
|
self.args.per_device_train_batch_size = self._train_batch_size // max(1, self.args.n_gpu) |
|
|
self.propagate_args_to_deepspeed(True) |
|
|
self.args.per_device_train_batch_size = original_bs |
|
|
self.state.train_batch_size = self._train_batch_size |
|
|
logger.debug(f"Currently training with a batch size of: {self._train_batch_size}") |
|
|
|
|
|
train_dataloader = self.get_train_dataloader() |
|
|
if self.is_fsdp_xla_v2_enabled: |
|
|
train_dataloader = tpu_spmd_dataloader(train_dataloader) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_train_batch_size = self.get_total_train_batch_size(args) |
|
|
|
|
|
( |
|
|
num_train_epochs, |
|
|
num_update_steps_per_epoch, |
|
|
num_examples, |
|
|
num_train_samples, |
|
|
epoch_based, |
|
|
len_dataloader, |
|
|
max_steps, |
|
|
) = self.set_initial_training_values(args, train_dataloader, total_train_batch_size) |
|
|
|
|
|
num_train_tokens = None |
|
|
if self.args.include_tokens_per_second: |
|
|
num_train_tokens = self.num_tokens(train_dataloader, None if epoch_based else max_steps) |
|
|
|
|
|
if len_dataloader is not None and epoch_based: |
|
|
num_train_tokens *= args.num_train_epochs |
|
|
|
|
|
else: |
|
|
num_train_tokens *= args.gradient_accumulation_steps |
|
|
|
|
|
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug: |
|
|
if self.args.n_gpu > 1: |
|
|
|
|
|
|
|
|
raise ValueError( |
|
|
"Currently --debug underflow_overflow is not supported under DP. Please use DDP" |
|
|
" (torchrun or torch.distributed.launch (deprecated))." |
|
|
) |
|
|
else: |
|
|
DebugUnderflowOverflow(self.model) |
|
|
|
|
|
delay_optimizer_creation = is_sagemaker_mp_enabled() or self.is_fsdp_xla_enabled or self.is_fsdp_enabled |
|
|
|
|
|
|
|
|
is_fsdp2 = self.is_fsdp_enabled and (getattr(self.accelerator.state.fsdp_plugin, "fsdp_version", 1) == 2) |
|
|
if is_fsdp2: |
|
|
delay_optimizer_creation = False |
|
|
|
|
|
|
|
|
if self._created_lr_scheduler: |
|
|
self.lr_scheduler = None |
|
|
self._created_lr_scheduler = False |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
|
self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps) |
|
|
|
|
|
if not delay_optimizer_creation: |
|
|
self.create_optimizer_and_scheduler(num_training_steps=max_steps) |
|
|
|
|
|
self.state = TrainerState( |
|
|
stateful_callbacks=[ |
|
|
cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState) |
|
|
] |
|
|
) |
|
|
self.state.is_hyper_param_search = trial is not None |
|
|
self.state.train_batch_size = self._train_batch_size |
|
|
|
|
|
|
|
|
self.state.compute_steps(args, max_steps) |
|
|
|
|
|
|
|
|
if args.gradient_checkpointing: |
|
|
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=args.gradient_checkpointing_kwargs) |
|
|
|
|
|
model = self._wrap_model(self.model_wrapped) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_accelerator_prepare = model is self.model |
|
|
|
|
|
if use_accelerator_prepare and self.is_fsdp_enabled: |
|
|
|
|
|
|
|
|
self.model = unwrap_model(self.model, recursive=True) |
|
|
|
|
|
if delay_optimizer_creation: |
|
|
if use_accelerator_prepare: |
|
|
|
|
|
self._fsdp_qlora_plugin_updates() |
|
|
if self.accelerator.mixed_precision != "fp8": |
|
|
self.model = self.accelerator.prepare(self.model) |
|
|
self.create_optimizer_and_scheduler(num_training_steps=max_steps) |
|
|
|
|
|
|
|
|
use_accelerator_prepare = False |
|
|
if use_accelerator_prepare: |
|
|
self.model.train() |
|
|
if hasattr(self.lr_scheduler, "step"): |
|
|
if self.use_apex: |
|
|
model = self.accelerator.prepare(self.model) |
|
|
else: |
|
|
|
|
|
if self.is_tp_enabled: |
|
|
self.optimizer = self.accelerator.prepare(self.optimizer) |
|
|
else: |
|
|
model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer) |
|
|
else: |
|
|
|
|
|
model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( |
|
|
self.model, self.optimizer, self.lr_scheduler |
|
|
) |
|
|
else: |
|
|
self.optimizer = self.accelerator.prepare(self.optimizer) |
|
|
|
|
|
if self.is_fsdp_enabled: |
|
|
self.model = self.model_wrapped = model |
|
|
|
|
|
|
|
|
if model is not self.model: |
|
|
self.model_wrapped = model |
|
|
|
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
|
self.deepspeed = self.model_wrapped |
|
|
|
|
|
|
|
|
if resume_from_checkpoint is not None: |
|
|
if self.is_deepspeed_enabled: |
|
|
deepspeed_load_checkpoint( |
|
|
self.model_wrapped, resume_from_checkpoint, load_module_strict=not _is_peft_model(self.model) |
|
|
) |
|
|
elif is_sagemaker_mp_enabled() or self.is_fsdp_enabled: |
|
|
self._load_from_checkpoint(resume_from_checkpoint, self.model_wrapped) |
|
|
|
|
|
|
|
|
self._load_optimizer_and_scheduler(resume_from_checkpoint) |
|
|
self._load_scaler(resume_from_checkpoint) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("***** Running training *****") |
|
|
logger.info(f" Num examples = {num_examples:,}") |
|
|
logger.info(f" Num Epochs = {num_train_epochs:,}") |
|
|
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}") |
|
|
if self.args.per_device_train_batch_size != self._train_batch_size: |
|
|
logger.info(f" Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}") |
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}") |
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
|
logger.info(f" Total optimization steps = {max_steps:,}") |
|
|
logger.info(f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}") |
|
|
|
|
|
self.state.epoch = 0 |
|
|
start_time = time.time() |
|
|
epochs_trained = 0 |
|
|
steps_trained_in_current_epoch = 0 |
|
|
|
|
|
|
|
|
if resume_from_checkpoint is not None and os.path.isfile( |
|
|
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME) |
|
|
): |
|
|
self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)) |
|
|
self.compare_trainer_and_checkpoint_args(self.args, self.state) |
|
|
self._load_callback_state() |
|
|
epochs_trained = int(self.state.global_step // num_update_steps_per_epoch) |
|
|
if not args.ignore_data_skip: |
|
|
steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) |
|
|
steps_trained_in_current_epoch *= args.gradient_accumulation_steps |
|
|
else: |
|
|
steps_trained_in_current_epoch = 0 |
|
|
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step") |
|
|
logger.info(f" Continuing training from epoch {epochs_trained}") |
|
|
logger.info(f" Continuing training from global step {self.state.global_step}") |
|
|
if not args.ignore_data_skip: |
|
|
logger.info( |
|
|
f" Will skip the first {epochs_trained} epochs then the first" |
|
|
f" {steps_trained_in_current_epoch} batches in the first epoch." |
|
|
) |
|
|
|
|
|
|
|
|
for attr in ("model", "optimizer", "lr_scheduler"): |
|
|
setattr(self.callback_handler, attr, getattr(self, attr)) |
|
|
self.callback_handler.train_dataloader = train_dataloader |
|
|
|
|
|
self.state.init_training_references(self, max_steps, num_train_epochs, trial) |
|
|
|
|
|
|
|
|
tr_loss = torch.tensor(0.0, device=model.out_device) |
|
|
|
|
|
self._total_loss_scalar = 0.0 |
|
|
self._globalstep_last_logged = self.state.global_step |
|
|
model.zero_grad() |
|
|
grad_norm: Optional[float] = None |
|
|
learning_rate = None |
|
|
self.control = self.callback_handler.on_train_begin(args, self.state, self.control) |
|
|
|
|
|
if args.eval_on_start: |
|
|
self._evaluate(trial, ignore_keys_for_eval, skip_scheduler=True) |
|
|
|
|
|
for epoch in range(epochs_trained, num_train_epochs): |
|
|
epoch_dataloader = train_dataloader |
|
|
if hasattr(epoch_dataloader, "set_epoch"): |
|
|
epoch_dataloader.set_epoch(epoch) |
|
|
|
|
|
|
|
|
if args.past_index >= 0: |
|
|
self._past = None |
|
|
|
|
|
steps_in_epoch = ( |
|
|
len(epoch_dataloader) |
|
|
if len_dataloader is not None |
|
|
else args.max_steps * args.gradient_accumulation_steps |
|
|
) |
|
|
self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) |
|
|
|
|
|
step = -1 |
|
|
rng_to_sync = False |
|
|
|
|
|
|
|
|
if epoch == epochs_trained and resume_from_checkpoint is not None: |
|
|
if steps_trained_in_current_epoch > 0 and not args.ignore_data_skip: |
|
|
epoch_dataloader = skip_first_batches(epoch_dataloader, steps_trained_in_current_epoch) |
|
|
step = steps_trained_in_current_epoch - 1 |
|
|
rng_to_sync = True |
|
|
elif steps_trained_in_current_epoch == 0: |
|
|
self._load_rng_state(resume_from_checkpoint) |
|
|
|
|
|
epoch_iterator = iter(epoch_dataloader) |
|
|
|
|
|
remainder = steps_in_epoch % args.gradient_accumulation_steps |
|
|
if remainder == 0: |
|
|
remainder = args.gradient_accumulation_steps |
|
|
update_step = -1 |
|
|
total_updates = steps_in_epoch // args.gradient_accumulation_steps + int( |
|
|
remainder < args.gradient_accumulation_steps |
|
|
) |
|
|
for _ in range(total_updates): |
|
|
update_step += 1 |
|
|
num_batches = args.gradient_accumulation_steps if update_step != (total_updates - 1) else remainder |
|
|
batch_samples, num_items_in_batch = self.get_batch_samples(epoch_iterator, num_batches, args.device) |
|
|
|
|
|
|
|
|
self.current_gradient_accumulation_steps = len(batch_samples) |
|
|
for i, inputs in enumerate(batch_samples): |
|
|
step += 1 |
|
|
do_sync_step = (step + 1) % args.gradient_accumulation_steps == 0 or (step + 1) == steps_in_epoch |
|
|
|
|
|
self.accelerator.gradient_state._set_sync_gradients(do_sync_step) |
|
|
|
|
|
if self.args.include_num_input_tokens_seen not in ["no", False]: |
|
|
main_input_name = getattr(self.model, "main_input_name", "input_ids") |
|
|
if main_input_name not in inputs: |
|
|
logger.warning( |
|
|
"Tried to track the number of tokens seen, however the current model is " |
|
|
"not configured properly to know what item is the input. To fix this, add " |
|
|
"a `main_input_name` attribute to the model class you are using." |
|
|
) |
|
|
else: |
|
|
if self.args.include_num_input_tokens_seen == "non_padding": |
|
|
if "attention_mask" in inputs: |
|
|
input_tokens = inputs["attention_mask"].sum() |
|
|
elif ( |
|
|
self.processing_class is not None |
|
|
and hasattr(self.processing_class, "pad_token_id") |
|
|
and self.processing_class.pad_token_id is not None |
|
|
): |
|
|
input_tokens = ( |
|
|
inputs[main_input_name] != self.processing_class.pad_token_id |
|
|
).sum() |
|
|
else: |
|
|
logger.warning( |
|
|
"Could not determine method to count non-padding tokens, falling back to counting all tokens." |
|
|
) |
|
|
input_tokens = inputs[main_input_name].numel() |
|
|
else: |
|
|
input_tokens = inputs[main_input_name].numel() |
|
|
|
|
|
input_tokens = torch.tensor(input_tokens, device=self.args.device, dtype=torch.int64) |
|
|
self.state.num_input_tokens_seen += self.accelerator.gather(input_tokens).sum().item() |
|
|
|
|
|
if rng_to_sync: |
|
|
self._load_rng_state(resume_from_checkpoint) |
|
|
rng_to_sync = False |
|
|
|
|
|
if step % args.gradient_accumulation_steps == 0: |
|
|
self.control = self.callback_handler.on_step_begin(args, self.state, self.control) |
|
|
|
|
|
|
|
|
context = ( |
|
|
functools.partial(self.accelerator.no_sync, model=model) |
|
|
if i != len(batch_samples) - 1 |
|
|
and self.accelerator.distributed_type != DistributedType.DEEPSPEED |
|
|
else contextlib.nullcontext |
|
|
) |
|
|
with context(): |
|
|
tr_loss_step = self.training_step(model, inputs, num_items_in_batch) |
|
|
|
|
|
if ( |
|
|
args.logging_nan_inf_filter |
|
|
and not is_torch_xla_available() |
|
|
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step)) |
|
|
): |
|
|
|
|
|
tr_loss = tr_loss + tr_loss / (1 + self.state.global_step - self._globalstep_last_logged) |
|
|
else: |
|
|
if tr_loss.device != tr_loss_step.device: |
|
|
raise ValueError( |
|
|
f"Calculated loss must be on the original device: {tr_loss.device} but device in use is {tr_loss_step.device}" |
|
|
) |
|
|
tr_loss = tr_loss + tr_loss_step |
|
|
|
|
|
self.current_flos += float(self.floating_point_ops(inputs)) |
|
|
|
|
|
if do_sync_step: |
|
|
|
|
|
self.accelerator.gradient_state._set_sync_gradients(True) |
|
|
|
|
|
|
|
|
if args.max_grad_norm is not None and args.max_grad_norm > 0: |
|
|
if is_sagemaker_mp_enabled() and args.fp16: |
|
|
_grad_norm = self.optimizer.clip_master_grads(args.max_grad_norm) |
|
|
elif self.use_apex: |
|
|
from apex import amp |
|
|
|
|
|
|
|
|
_grad_norm = nn.utils.clip_grad_norm_( |
|
|
amp.master_params(self.optimizer), |
|
|
args.max_grad_norm, |
|
|
) |
|
|
else: |
|
|
grad_norm_context = contextlib.nullcontext |
|
|
if self.is_tp_enabled: |
|
|
from torch.distributed._tensor.experimental import implicit_replication |
|
|
|
|
|
grad_norm_context = implicit_replication |
|
|
with grad_norm_context(): |
|
|
_grad_norm = self.accelerator.clip_grad_norm_( |
|
|
model.parameters(), |
|
|
args.max_grad_norm, |
|
|
) |
|
|
|
|
|
if ( |
|
|
is_accelerate_available() |
|
|
and self.accelerator.distributed_type == DistributedType.DEEPSPEED |
|
|
): |
|
|
grad_norm = model.get_global_grad_norm() |
|
|
|
|
|
if hasattr(grad_norm, "item"): |
|
|
grad_norm = grad_norm.item() |
|
|
else: |
|
|
grad_norm = _grad_norm |
|
|
|
|
|
self.control = self.callback_handler.on_pre_optimizer_step(args, self.state, self.control) |
|
|
|
|
|
context = contextlib.nullcontext |
|
|
if self.is_tp_enabled: |
|
|
from torch.distributed._tensor.experimental import implicit_replication |
|
|
|
|
|
context = implicit_replication |
|
|
|
|
|
with context(): |
|
|
self.optimizer.step() |
|
|
|
|
|
self.control = self.callback_handler.on_optimizer_step(args, self.state, self.control) |
|
|
|
|
|
|
|
|
learning_rate = self._get_learning_rate() |
|
|
|
|
|
if not self.accelerator.optimizer_step_was_skipped: |
|
|
|
|
|
if not isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): |
|
|
self.lr_scheduler.step() |
|
|
|
|
|
model.zero_grad() |
|
|
self.state.global_step += 1 |
|
|
self.state.epoch = epoch + (step + 1) / steps_in_epoch |
|
|
self.control = self.callback_handler.on_step_end(args, self.state, self.control) |
|
|
self._maybe_log_save_evaluate( |
|
|
tr_loss, |
|
|
grad_norm, |
|
|
model, |
|
|
trial, |
|
|
epoch, |
|
|
ignore_keys_for_eval, |
|
|
start_time, |
|
|
learning_rate=learning_rate, |
|
|
) |
|
|
else: |
|
|
self.control = self.callback_handler.on_substep_end(args, self.state, self.control) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.control.should_epoch_stop or self.control.should_training_stop: |
|
|
if is_torch_xla_available(): |
|
|
xm.mark_step() |
|
|
break |
|
|
|
|
|
if self.control.should_epoch_stop or self.control.should_training_stop: |
|
|
if is_torch_xla_available(): |
|
|
xm.mark_step() |
|
|
break |
|
|
if step < 0: |
|
|
logger.warning( |
|
|
"There seems not to be a single sample in your epoch_iterator, stopping training at step" |
|
|
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set" |
|
|
f" num_steps ({max_steps}) higher than the number of available samples." |
|
|
) |
|
|
self.control.should_training_stop = True |
|
|
|
|
|
self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) |
|
|
self._maybe_log_save_evaluate( |
|
|
tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time, learning_rate=learning_rate |
|
|
) |
|
|
|
|
|
if DebugOption.TPU_METRICS_DEBUG in self.args.debug: |
|
|
if is_torch_xla_available(): |
|
|
|
|
|
xm.master_print(met.metrics_report()) |
|
|
else: |
|
|
logger.warning( |
|
|
"You enabled PyTorch/XLA debug metrics but you don't have a TPU " |
|
|
"configured. Check your training configuration if this is unexpected." |
|
|
) |
|
|
if self.control.should_training_stop: |
|
|
break |
|
|
|
|
|
if args.past_index and hasattr(self, "_past"): |
|
|
|
|
|
delattr(self, "_past") |
|
|
|
|
|
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") |
|
|
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None: |
|
|
self._load_best_model() |
|
|
|
|
|
|
|
|
self._total_loss_scalar += tr_loss.item() |
|
|
effective_global_step = max(self.state.global_step, 0.001) |
|
|
train_loss = self._total_loss_scalar / effective_global_step |
|
|
|
|
|
metrics = speed_metrics( |
|
|
"train", |
|
|
start_time, |
|
|
num_samples=num_train_samples, |
|
|
num_steps=self.state.max_steps, |
|
|
num_tokens=num_train_tokens, |
|
|
) |
|
|
self.store_flos() |
|
|
metrics["total_flos"] = self.state.total_flos |
|
|
metrics["train_loss"] = train_loss |
|
|
|
|
|
self.is_in_train = False |
|
|
|
|
|
self._memory_tracker.stop_and_update_metrics(metrics) |
|
|
|
|
|
self.log(metrics) |
|
|
|
|
|
run_dir = self._get_output_dir(trial) |
|
|
checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=run_dir) |
|
|
|
|
|
|
|
|
if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1: |
|
|
for checkpoint in checkpoints_sorted: |
|
|
if not os.path.samefile(checkpoint, self.state.best_model_checkpoint): |
|
|
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") |
|
|
shutil.rmtree(checkpoint, ignore_errors=True) |
|
|
|
|
|
self.control = self.callback_handler.on_train_end(args, self.state, self.control) |
|
|
|
|
|
|
|
|
self._finish_current_push() |
|
|
|
|
|
|
|
|
|
|
|
if self.neftune_noise_alpha is not None: |
|
|
self._deactivate_neftune(self.model) |
|
|
|
|
|
return TrainOutput(self.state.global_step, train_loss, metrics) |