jkorstad commited on
Commit
d62d7a9
·
1 Parent(s): e83b2a8

Push PPO Jk-LunarLander-v2 model

Browse files
Jk-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb6887219b7da100c0e8e253901e4f0cc0d0a42fd1ff8be20c86a0be81b71975
3
+ size 147319
Jk-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
Jk-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f31b3e5e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f31b3e670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f31b3e700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f31b3e790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8f31b3e820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8f31b3e8b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8f31b3e940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f31b3e9d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8f31b3ea60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f31b3eaf0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f31b3eb80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f31b3ec10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8f31b43f80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000100,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681077743883156068,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA34Dr4MAn0/lrAZvpE89L57o2O+YR3JPAAAAAAAAAAA5uxQvTqybD6lEYc+OheJvvNOKz5ZPsE8AAAAAAAAAADNeMo8XFNbusJccDnTXGo0ZtmruRpHjbgAAIA/AACAP63xEL6ICY0/TkXAvpsQ5r4xc2++usEavgAAAAAAAAAAZhGvPI/ma7r949M6mkzKNfsUozozi/i5AACAPwAAgD+attq8pJanP6s/T74Qqf2+UixdvcpDD74AAAAAAAAAAAVnmr4T0iQ/iVy0PWJt2r40uTW+hooLPgAAAAAAAAAAmvslPPYkG7oGH/G51Y8PtNEeiDtTBA05AACAPwAAgD/NRBw8ES7fPYJbED1XFWe+oN3OPR9+mbwAAAAAAAAAAGZCPzx2CTK81v/evRdKDb5saKk9GynsPgAAgD8AAIA/TfQpvs9XhT/07b++F1H3vrYqpL6q1zK+AAAAAAAAAACzpTu+9meoPgQkuj7at5O+R1eZPB78gD0AAAAAAAAAAE1qC73xiMs98tdSPmezZL79t+09ZcVBvQAAAAAAAAAAAKS9PI92bLoCkZM6Ty2KNSvGRjvsFq25AACAPwAAgD/mwTC9Ho4BP5T8Mz7NEvC+iVKUPfIplD0AAAAAAAAAAM1tuDyPtl+6vF8SuGkCCbPTKw+670IsNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015706429357064344,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgjl6/N4acUCUhpRSlIwBbJRL04wBdJRHQJk8YWpIczZ1fZQoaAZoCWgPQwjEsplDEjhxQJSGlFKUaBVL7GgWR0CZPNFAVwgldX2UKGgGaAloD0MIC3xFtx4FcUCUhpRSlGgVS+poFkdAmT0Mv7FbV3V9lChoBmgJaA9DCGYQH9jxq3JAlIaUUpRoFU0UAWgWR0CZPgbrkbPydX2UKGgGaAloD0MIhuRk4tZnb0CUhpRSlGgVS95oFkdAmT5dMfzSTnV9lChoBmgJaA9DCFu1a0KauXBAlIaUUpRoFUvtaBZHQJk/EpG4I8h1fZQoaAZoCWgPQwgJwhVQaGpzQJSGlFKUaBVNGQFoFkdAmT9qbBoEjnV9lChoBmgJaA9DCBqJ0Ag2r25AlIaUUpRoFU0pAWgWR0CZP4vugHu7dX2UKGgGaAloD0MIlEp4Qu8pcUCUhpRSlGgVTQ8BaBZHQJk/oU1yeZp1fZQoaAZoCWgPQwi14bA0sGpxQJSGlFKUaBVL72gWR0CZP/lTWGypdX2UKGgGaAloD0MIj3Iwm8BQcECUhpRSlGgVS/doFkdAmUAGG7Bfr3V9lChoBmgJaA9DCCxIMxaNJHBAlIaUUpRoFUv2aBZHQJlATEqDsdF1fZQoaAZoCWgPQwjNc0S+y5xwQJSGlFKUaBVL72gWR0CZQTVdHDrJdX2UKGgGaAloD0MIJET5gpYzc0CUhpRSlGgVS/VoFkdAmUJWax5cDHV9lChoBmgJaA9DCJUqUfYWhnFAlIaUUpRoFU0BAWgWR0CZQoAZbY9QdX2UKGgGaAloD0MIFCF1O/ttcUCUhpRSlGgVS9loFkdAmUKFM/QjU3V9lChoBmgJaA9DCBDrjVohonJAlIaUUpRoFU0JAWgWR0CZQwgrpaA4dX2UKGgGaAloD0MIiNo2jIIscECUhpRSlGgVS95oFkdAmUNxIz3yqnV9lChoBmgJaA9DCP8FggBZA3JAlIaUUpRoFU0SAWgWR0CZQ6riEQGwdX2UKGgGaAloD0MIGm7A50eLcUCUhpRSlGgVTTYBaBZHQJlD0YqG1x91fZQoaAZoCWgPQwim7zUEByJzQJSGlFKUaBVL82gWR0CZRD26ClJpdX2UKGgGaAloD0MIInAk0CAccUCUhpRSlGgVS/1oFkdAmUU1sk6cRXV9lChoBmgJaA9DCPPkmgIZh3BAlIaUUpRoFUv3aBZHQJlFoEr5IpZ1fZQoaAZoCWgPQwgRNGYSdVBwQJSGlFKUaBVL6mgWR0CZRbe7L+xXdX2UKGgGaAloD0MIYJD0aVWeckCUhpRSlGgVTQgBaBZHQJlF88JUo8Z1fZQoaAZoCWgPQwiq1y0Co5pyQJSGlFKUaBVL+WgWR0CZRiCQ9zOpdX2UKGgGaAloD0MIyqSGNsCXcECUhpRSlGgVTRsBaBZHQJlGRjFyaNN1fZQoaAZoCWgPQwiQaAJFbKByQJSGlFKUaBVL9mgWR0CZRlh7mdRSdX2UKGgGaAloD0MIC5qWWBkHR0CUhpRSlGgVS7RoFkdAmUbiksSTQnV9lChoBmgJaA9DCGnjiLV4b3JAlIaUUpRoFUv7aBZHQJlHRGgBcRl1fZQoaAZoCWgPQwg6eCY0iflwQJSGlFKUaBVL12gWR0CZSCv3JxNqdX2UKGgGaAloD0MI2jwOg7kickCUhpRSlGgVTQUBaBZHQJlIkCeVcD91fZQoaAZoCWgPQwjCacGL/lFyQJSGlFKUaBVL/2gWR0CZSJTr3TNMdX2UKGgGaAloD0MIKUAUzJjVcECUhpRSlGgVS9poFkdAmUiiNn5BTnV9lChoBmgJaA9DCLeadcY3jXFAlIaUUpRoFU0BAWgWR0CZSe7P6be/dX2UKGgGaAloD0MIho2yfvNzckCUhpRSlGgVTRUBaBZHQJlKTq5byH51fZQoaAZoCWgPQwiAuoEC78FvQJSGlFKUaBVNCgFoFkdAmWF0Qf6oEXV9lChoBmgJaA9DCNXo1QBlhnBAlIaUUpRoFUvnaBZHQJlhe4vvjOt1fZQoaAZoCWgPQwhtVRLZByxxQJSGlFKUaBVNCgFoFkdAmWHhRZU1h3V9lChoBmgJaA9DCLzLRXznq3FAlIaUUpRoFU0KAWgWR0CZYfk/KQq7dX2UKGgGaAloD0MIdF/ObNfKcECUhpRSlGgVTUkBaBZHQJliOOXE61d1fZQoaAZoCWgPQwh7E0NysmhyQJSGlFKUaBVNGQFoFkdAmWKgh8pkPXV9lChoBmgJaA9DCC+ISE27ZXNAlIaUUpRoFUv0aBZHQJliytmtheB1fZQoaAZoCWgPQwifH0YID1NvQJSGlFKUaBVL6mgWR0CZYvtVrAP/dX2UKGgGaAloD0MIFyzVBbwXcECUhpRSlGgVTRsBaBZHQJljBcyFfzB1fZQoaAZoCWgPQwgMlBRYwItxQJSGlFKUaBVNJgFoFkdAmWNUFSsKcHV9lChoBmgJaA9DCBKI1/XLgXBAlIaUUpRoFUvvaBZHQJlkYVrRBu51fZQoaAZoCWgPQwiPUDOkSvhwQJSGlFKUaBVL7GgWR0CZZF7vXsgMdX2UKGgGaAloD0MIrVEP0Wgac0CUhpRSlGgVTQ4BaBZHQJlkspd8iOh1fZQoaAZoCWgPQwi4kh0bQZdwQJSGlFKUaBVNGgFoFkdAmWVjzRQaaXV9lChoBmgJaA9DCCtQi8HD2VJAlIaUUpRoFUu0aBZHQJlmVwZOzpp1fZQoaAZoCWgPQwhtdTklYJNxQJSGlFKUaBVL92gWR0CZZl3Ux20RdX2UKGgGaAloD0MIF2U2yOR5cUCUhpRSlGgVS9loFkdAmWbW7e2uxXV9lChoBmgJaA9DCHQkl//QMnFAlIaUUpRoFU0YAWgWR0CZZuBMSK3vdX2UKGgGaAloD0MIuD1BYjtHckCUhpRSlGgVS+loFkdAmWc9fb9IgHV9lChoBmgJaA9DCCleZW1TFnFAlIaUUpRoFUvbaBZHQJlniCPIXCV1fZQoaAZoCWgPQwgAOzdthsFxQJSGlFKUaBVL12gWR0CZZ/dOZb6hdX2UKGgGaAloD0MIf6Dctq8UckCUhpRSlGgVS/FoFkdAmWhxtk4FR3V9lChoBmgJaA9DCJOsw9HV8G1AlIaUUpRoFUvtaBZHQJlox0yP+4t1fZQoaAZoCWgPQwicGJKTCSxwQJSGlFKUaBVL9mgWR0CZaPibUgB+dX2UKGgGaAloD0MIp+uJrot9cECUhpRSlGgVTSEBaBZHQJlo+YQarFR1fZQoaAZoCWgPQwiKOnMPSR5yQJSGlFKUaBVL/WgWR0CZaX4RVZLadX2UKGgGaAloD0MIPPn02Ba/cECUhpRSlGgVS+xoFkdAmWosNYr8SHV9lChoBmgJaA9DCDWZ8baS2XFAlIaUUpRoFU0JAWgWR0CZau5HVf/ndX2UKGgGaAloD0MIT5SERNqZckCUhpRSlGgVTQMBaBZHQJlrHPt2LYR1fZQoaAZoCWgPQwhBfcucrudxQJSGlFKUaBVL32gWR0CZa9kYoAn2dX2UKGgGaAloD0MIakyIuaRFbkCUhpRSlGgVTQMBaBZHQJlr2bsniNt1fZQoaAZoCWgPQwglea7vQ2lxQJSGlFKUaBVL+GgWR0CZbHUdq+JxdX2UKGgGaAloD0MIkPgVa7jVcECUhpRSlGgVS/ZoFkdAmWzkX+ERJ3V9lChoBmgJaA9DCD90QX3LzW9AlIaUUpRoFUv7aBZHQJltDwPRRdh1fZQoaAZoCWgPQwjwiArVTYxuQJSGlFKUaBVL8WgWR0CZbTKPXCj2dX2UKGgGaAloD0MIhXzQs9mRc0CUhpRSlGgVS+hoFkdAmW3OAI6bOXV9lChoBmgJaA9DCC/gZYYNqW5AlIaUUpRoFUvyaBZHQJlukBsANod1fZQoaAZoCWgPQwjYDkbs03RxQJSGlFKUaBVL6GgWR0CZbs2/BWPtdX2UKGgGaAloD0MI9DXLZaMzc0CUhpRSlGgVTQoBaBZHQJlvp8jRlYl1fZQoaAZoCWgPQwhFSUikrYxyQJSGlFKUaBVNRAFoFkdAmW+sibDuSnV9lChoBmgJaA9DCFEWvr6WkHJAlIaUUpRoFU0RAWgWR0CZcGt4iX6ZdX2UKGgGaAloD0MIwyreyDyGcECUhpRSlGgVS/ZoFkdAmXCCLIgeR3V9lChoBmgJaA9DCF9CBYeXMW9AlIaUUpRoFU07AWgWR0CZcMH3UQTVdX2UKGgGaAloD0MIAtTUsvWRcUCUhpRSlGgVS+1oFkdAmXE6+FlCkXV9lChoBmgJaA9DCAIPDCD8MnFAlIaUUpRoFUvSaBZHQJlx6uieumt1fZQoaAZoCWgPQwg+dhco6UpwQJSGlFKUaBVL72gWR0CZcgx8lXzUdX2UKGgGaAloD0MI4e8Xs6WCc0CUhpRSlGgVTR8BaBZHQJlyVIRRMvh1fZQoaAZoCWgPQwhQwkzbf6hxQJSGlFKUaBVNBgFoFkdAmXKg9JSR83V9lChoBmgJaA9DCEfmkT9YS3NAlIaUUpRoFUviaBZHQJlyv28IzFd1fZQoaAZoCWgPQwhioGtfQLpxQJSGlFKUaBVNBgFoFkdAmXO+ee4Cp3V9lChoBmgJaA9DCKaAtP+B8W9AlIaUUpRoFUv3aBZHQJl0ERZlnRN1fZQoaAZoCWgPQwj/eoUF91hyQJSGlFKUaBVNDQFoFkdAmXQRKQJXyXV9lChoBmgJaA9DCKMCJ9tAFXFAlIaUUpRoFUvhaBZHQJl0Pc1wYLt1fZQoaAZoCWgPQwhffTz03SVxQJSGlFKUaBVL5mgWR0CZdI9B8hLXdX2UKGgGaAloD0MIF3/bE+TocUCUhpRSlGgVS+hoFkdAmXVuo99tuXV9lChoBmgJaA9DCMi3dw16em9AlIaUUpRoFU0BAWgWR0CZdgbKA8SxdX2UKGgGaAloD0MIUDkmi3vObUCUhpRSlGgVS/BoFkdAmXZRcZ9/jXV9lChoBmgJaA9DCHf0v1wLzXFAlIaUUpRoFUvtaBZHQJl2jN0NjLB1fZQoaAZoCWgPQwhuawvPi1BxQJSGlFKUaBVNCgFoFkdAmXcPqTr3TXV9lChoBmgJaA9DCGL1RxjGanFAlIaUUpRoFU0IAWgWR0CZd7OmR/3GdX2UKGgGaAloD0MIhslUwai3b0CUhpRSlGgVTRYBaBZHQJl4y6g/Tsp1fZQoaAZoCWgPQwjb96i/XqRyQJSGlFKUaBVNEwFoFkdAmXkzXOGCZnV9lChoBmgJaA9DCBYUBmVaXXBAlIaUUpRoFU0IAWgWR0CZeVo4uK4ydX2UKGgGaAloD0MIdcqjG2EycECUhpRSlGgVTR0BaBZHQJl5ztNSIgx1ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 300,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
Jk-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b730ccbc80679a5716cd59403ca240264de48b7c82dc148e1f62dca92842b4d
3
+ size 87929
Jk-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1db3024b424599a75424a9e0bc2900eee849758271780db24515117de673474
3
+ size 43329
Jk-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Jk-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.24 +/- 22.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f31b3e5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f31b3e670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f31b3e700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f31b3e790>", "_build": "<function ActorCriticPolicy._build at 0x7f8f31b3e820>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f31b3e8b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8f31b3e940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f31b3e9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f31b3ea60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f31b3eaf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f31b3eb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f31b3ec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8f31b43f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681077743883156068, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA34Dr4MAn0/lrAZvpE89L57o2O+YR3JPAAAAAAAAAAA5uxQvTqybD6lEYc+OheJvvNOKz5ZPsE8AAAAAAAAAADNeMo8XFNbusJccDnTXGo0ZtmruRpHjbgAAIA/AACAP63xEL6ICY0/TkXAvpsQ5r4xc2++usEavgAAAAAAAAAAZhGvPI/ma7r949M6mkzKNfsUozozi/i5AACAPwAAgD+attq8pJanP6s/T74Qqf2+UixdvcpDD74AAAAAAAAAAAVnmr4T0iQ/iVy0PWJt2r40uTW+hooLPgAAAAAAAAAAmvslPPYkG7oGH/G51Y8PtNEeiDtTBA05AACAPwAAgD/NRBw8ES7fPYJbED1XFWe+oN3OPR9+mbwAAAAAAAAAAGZCPzx2CTK81v/evRdKDb5saKk9GynsPgAAgD8AAIA/TfQpvs9XhT/07b++F1H3vrYqpL6q1zK+AAAAAAAAAACzpTu+9meoPgQkuj7at5O+R1eZPB78gD0AAAAAAAAAAE1qC73xiMs98tdSPmezZL79t+09ZcVBvQAAAAAAAAAAAKS9PI92bLoCkZM6Ty2KNSvGRjvsFq25AACAPwAAgD/mwTC9Ho4BP5T8Mz7NEvC+iVKUPfIplD0AAAAAAAAAAM1tuDyPtl+6vF8SuGkCCbPTKw+670IsNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015706429357064344, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgjl6/N4acUCUhpRSlIwBbJRL04wBdJRHQJk8YWpIczZ1fZQoaAZoCWgPQwjEsplDEjhxQJSGlFKUaBVL7GgWR0CZPNFAVwgldX2UKGgGaAloD0MIC3xFtx4FcUCUhpRSlGgVS+poFkdAmT0Mv7FbV3V9lChoBmgJaA9DCGYQH9jxq3JAlIaUUpRoFU0UAWgWR0CZPgbrkbPydX2UKGgGaAloD0MIhuRk4tZnb0CUhpRSlGgVS95oFkdAmT5dMfzSTnV9lChoBmgJaA9DCFu1a0KauXBAlIaUUpRoFUvtaBZHQJk/EpG4I8h1fZQoaAZoCWgPQwgJwhVQaGpzQJSGlFKUaBVNGQFoFkdAmT9qbBoEjnV9lChoBmgJaA9DCBqJ0Ag2r25AlIaUUpRoFU0pAWgWR0CZP4vugHu7dX2UKGgGaAloD0MIlEp4Qu8pcUCUhpRSlGgVTQ8BaBZHQJk/oU1yeZp1fZQoaAZoCWgPQwi14bA0sGpxQJSGlFKUaBVL72gWR0CZP/lTWGypdX2UKGgGaAloD0MIj3Iwm8BQcECUhpRSlGgVS/doFkdAmUAGG7Bfr3V9lChoBmgJaA9DCCxIMxaNJHBAlIaUUpRoFUv2aBZHQJlATEqDsdF1fZQoaAZoCWgPQwjNc0S+y5xwQJSGlFKUaBVL72gWR0CZQTVdHDrJdX2UKGgGaAloD0MIJET5gpYzc0CUhpRSlGgVS/VoFkdAmUJWax5cDHV9lChoBmgJaA9DCJUqUfYWhnFAlIaUUpRoFU0BAWgWR0CZQoAZbY9QdX2UKGgGaAloD0MIFCF1O/ttcUCUhpRSlGgVS9loFkdAmUKFM/QjU3V9lChoBmgJaA9DCBDrjVohonJAlIaUUpRoFU0JAWgWR0CZQwgrpaA4dX2UKGgGaAloD0MIiNo2jIIscECUhpRSlGgVS95oFkdAmUNxIz3yqnV9lChoBmgJaA9DCP8FggBZA3JAlIaUUpRoFU0SAWgWR0CZQ6riEQGwdX2UKGgGaAloD0MIGm7A50eLcUCUhpRSlGgVTTYBaBZHQJlD0YqG1x91fZQoaAZoCWgPQwim7zUEByJzQJSGlFKUaBVL82gWR0CZRD26ClJpdX2UKGgGaAloD0MIInAk0CAccUCUhpRSlGgVS/1oFkdAmUU1sk6cRXV9lChoBmgJaA9DCPPkmgIZh3BAlIaUUpRoFUv3aBZHQJlFoEr5IpZ1fZQoaAZoCWgPQwgRNGYSdVBwQJSGlFKUaBVL6mgWR0CZRbe7L+xXdX2UKGgGaAloD0MIYJD0aVWeckCUhpRSlGgVTQgBaBZHQJlF88JUo8Z1fZQoaAZoCWgPQwiq1y0Co5pyQJSGlFKUaBVL+WgWR0CZRiCQ9zOpdX2UKGgGaAloD0MIyqSGNsCXcECUhpRSlGgVTRsBaBZHQJlGRjFyaNN1fZQoaAZoCWgPQwiQaAJFbKByQJSGlFKUaBVL9mgWR0CZRlh7mdRSdX2UKGgGaAloD0MIC5qWWBkHR0CUhpRSlGgVS7RoFkdAmUbiksSTQnV9lChoBmgJaA9DCGnjiLV4b3JAlIaUUpRoFUv7aBZHQJlHRGgBcRl1fZQoaAZoCWgPQwg6eCY0iflwQJSGlFKUaBVL12gWR0CZSCv3JxNqdX2UKGgGaAloD0MI2jwOg7kickCUhpRSlGgVTQUBaBZHQJlIkCeVcD91fZQoaAZoCWgPQwjCacGL/lFyQJSGlFKUaBVL/2gWR0CZSJTr3TNMdX2UKGgGaAloD0MIKUAUzJjVcECUhpRSlGgVS9poFkdAmUiiNn5BTnV9lChoBmgJaA9DCLeadcY3jXFAlIaUUpRoFU0BAWgWR0CZSe7P6be/dX2UKGgGaAloD0MIho2yfvNzckCUhpRSlGgVTRUBaBZHQJlKTq5byH51fZQoaAZoCWgPQwiAuoEC78FvQJSGlFKUaBVNCgFoFkdAmWF0Qf6oEXV9lChoBmgJaA9DCNXo1QBlhnBAlIaUUpRoFUvnaBZHQJlhe4vvjOt1fZQoaAZoCWgPQwhtVRLZByxxQJSGlFKUaBVNCgFoFkdAmWHhRZU1h3V9lChoBmgJaA9DCLzLRXznq3FAlIaUUpRoFU0KAWgWR0CZYfk/KQq7dX2UKGgGaAloD0MIdF/ObNfKcECUhpRSlGgVTUkBaBZHQJliOOXE61d1fZQoaAZoCWgPQwh7E0NysmhyQJSGlFKUaBVNGQFoFkdAmWKgh8pkPXV9lChoBmgJaA9DCC+ISE27ZXNAlIaUUpRoFUv0aBZHQJliytmtheB1fZQoaAZoCWgPQwifH0YID1NvQJSGlFKUaBVL6mgWR0CZYvtVrAP/dX2UKGgGaAloD0MIFyzVBbwXcECUhpRSlGgVTRsBaBZHQJljBcyFfzB1fZQoaAZoCWgPQwgMlBRYwItxQJSGlFKUaBVNJgFoFkdAmWNUFSsKcHV9lChoBmgJaA9DCBKI1/XLgXBAlIaUUpRoFUvvaBZHQJlkYVrRBu51fZQoaAZoCWgPQwiPUDOkSvhwQJSGlFKUaBVL7GgWR0CZZF7vXsgMdX2UKGgGaAloD0MIrVEP0Wgac0CUhpRSlGgVTQ4BaBZHQJlkspd8iOh1fZQoaAZoCWgPQwi4kh0bQZdwQJSGlFKUaBVNGgFoFkdAmWVjzRQaaXV9lChoBmgJaA9DCCtQi8HD2VJAlIaUUpRoFUu0aBZHQJlmVwZOzpp1fZQoaAZoCWgPQwhtdTklYJNxQJSGlFKUaBVL92gWR0CZZl3Ux20RdX2UKGgGaAloD0MIF2U2yOR5cUCUhpRSlGgVS9loFkdAmWbW7e2uxXV9lChoBmgJaA9DCHQkl//QMnFAlIaUUpRoFU0YAWgWR0CZZuBMSK3vdX2UKGgGaAloD0MIuD1BYjtHckCUhpRSlGgVS+loFkdAmWc9fb9IgHV9lChoBmgJaA9DCCleZW1TFnFAlIaUUpRoFUvbaBZHQJlniCPIXCV1fZQoaAZoCWgPQwgAOzdthsFxQJSGlFKUaBVL12gWR0CZZ/dOZb6hdX2UKGgGaAloD0MIf6Dctq8UckCUhpRSlGgVS/FoFkdAmWhxtk4FR3V9lChoBmgJaA9DCJOsw9HV8G1AlIaUUpRoFUvtaBZHQJlox0yP+4t1fZQoaAZoCWgPQwicGJKTCSxwQJSGlFKUaBVL9mgWR0CZaPibUgB+dX2UKGgGaAloD0MIp+uJrot9cECUhpRSlGgVTSEBaBZHQJlo+YQarFR1fZQoaAZoCWgPQwiKOnMPSR5yQJSGlFKUaBVL/WgWR0CZaX4RVZLadX2UKGgGaAloD0MIPPn02Ba/cECUhpRSlGgVS+xoFkdAmWosNYr8SHV9lChoBmgJaA9DCDWZ8baS2XFAlIaUUpRoFU0JAWgWR0CZau5HVf/ndX2UKGgGaAloD0MIT5SERNqZckCUhpRSlGgVTQMBaBZHQJlrHPt2LYR1fZQoaAZoCWgPQwhBfcucrudxQJSGlFKUaBVL32gWR0CZa9kYoAn2dX2UKGgGaAloD0MIakyIuaRFbkCUhpRSlGgVTQMBaBZHQJlr2bsniNt1fZQoaAZoCWgPQwglea7vQ2lxQJSGlFKUaBVL+GgWR0CZbHUdq+JxdX2UKGgGaAloD0MIkPgVa7jVcECUhpRSlGgVS/ZoFkdAmWzkX+ERJ3V9lChoBmgJaA9DCD90QX3LzW9AlIaUUpRoFUv7aBZHQJltDwPRRdh1fZQoaAZoCWgPQwjwiArVTYxuQJSGlFKUaBVL8WgWR0CZbTKPXCj2dX2UKGgGaAloD0MIhXzQs9mRc0CUhpRSlGgVS+hoFkdAmW3OAI6bOXV9lChoBmgJaA9DCC/gZYYNqW5AlIaUUpRoFUvyaBZHQJlukBsANod1fZQoaAZoCWgPQwjYDkbs03RxQJSGlFKUaBVL6GgWR0CZbs2/BWPtdX2UKGgGaAloD0MI9DXLZaMzc0CUhpRSlGgVTQoBaBZHQJlvp8jRlYl1fZQoaAZoCWgPQwhFSUikrYxyQJSGlFKUaBVNRAFoFkdAmW+sibDuSnV9lChoBmgJaA9DCFEWvr6WkHJAlIaUUpRoFU0RAWgWR0CZcGt4iX6ZdX2UKGgGaAloD0MIwyreyDyGcECUhpRSlGgVS/ZoFkdAmXCCLIgeR3V9lChoBmgJaA9DCF9CBYeXMW9AlIaUUpRoFU07AWgWR0CZcMH3UQTVdX2UKGgGaAloD0MIAtTUsvWRcUCUhpRSlGgVS+1oFkdAmXE6+FlCkXV9lChoBmgJaA9DCAIPDCD8MnFAlIaUUpRoFUvSaBZHQJlx6uieumt1fZQoaAZoCWgPQwg+dhco6UpwQJSGlFKUaBVL72gWR0CZcgx8lXzUdX2UKGgGaAloD0MI4e8Xs6WCc0CUhpRSlGgVTR8BaBZHQJlyVIRRMvh1fZQoaAZoCWgPQwhQwkzbf6hxQJSGlFKUaBVNBgFoFkdAmXKg9JSR83V9lChoBmgJaA9DCEfmkT9YS3NAlIaUUpRoFUviaBZHQJlyv28IzFd1fZQoaAZoCWgPQwhioGtfQLpxQJSGlFKUaBVNBgFoFkdAmXO+ee4Cp3V9lChoBmgJaA9DCKaAtP+B8W9AlIaUUpRoFUv3aBZHQJl0ERZlnRN1fZQoaAZoCWgPQwj/eoUF91hyQJSGlFKUaBVNDQFoFkdAmXQRKQJXyXV9lChoBmgJaA9DCKMCJ9tAFXFAlIaUUpRoFUvhaBZHQJl0Pc1wYLt1fZQoaAZoCWgPQwhffTz03SVxQJSGlFKUaBVL5mgWR0CZdI9B8hLXdX2UKGgGaAloD0MIF3/bE+TocUCUhpRSlGgVS+hoFkdAmXVuo99tuXV9lChoBmgJaA9DCMi3dw16em9AlIaUUpRoFU0BAWgWR0CZdgbKA8SxdX2UKGgGaAloD0MIUDkmi3vObUCUhpRSlGgVS/BoFkdAmXZRcZ9/jXV9lChoBmgJaA9DCHf0v1wLzXFAlIaUUpRoFUvtaBZHQJl2jN0NjLB1fZQoaAZoCWgPQwhuawvPi1BxQJSGlFKUaBVNCgFoFkdAmXcPqTr3TXV9lChoBmgJaA9DCGL1RxjGanFAlIaUUpRoFU0IAWgWR0CZd7OmR/3GdX2UKGgGaAloD0MIhslUwai3b0CUhpRSlGgVTRYBaBZHQJl4y6g/Tsp1fZQoaAZoCWgPQwjb96i/XqRyQJSGlFKUaBVNEwFoFkdAmXkzXOGCZnV9lChoBmgJaA9DCBYUBmVaXXBAlIaUUpRoFU0IAWgWR0CZeVo4uK4ydX2UKGgGaAloD0MIdcqjG2EycECUhpRSlGgVTR0BaBZHQJl5ztNSIgx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.24116298004674, "std_reward": 22.476271691022877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T22:44:55.871251"}