Update README.md
Browse files
README.md
CHANGED
@@ -17,10 +17,21 @@ This model is continuously pre-trained from a `roberta-base` checkpoint on ~3.2M
|
|
17 |
If you use this model, please cite the following paper:
|
18 |
|
19 |
```
|
20 |
-
@
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
```
|
|
|
17 |
If you use this model, please cite the following paper:
|
18 |
|
19 |
```
|
20 |
+
@inproceedings{zhang-etal-2024-nnose,
|
21 |
+
title = "{NNOSE}: Nearest Neighbor Occupational Skill Extraction",
|
22 |
+
author = "Zhang, Mike and
|
23 |
+
Goot, Rob and
|
24 |
+
Kan, Min-Yen and
|
25 |
+
Plank, Barbara",
|
26 |
+
editor = "Graham, Yvette and
|
27 |
+
Purver, Matthew",
|
28 |
+
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
29 |
+
month = mar,
|
30 |
+
year = "2024",
|
31 |
+
address = "St. Julian{'}s, Malta",
|
32 |
+
publisher = "Association for Computational Linguistics",
|
33 |
+
url = "https://aclanthology.org/2024.eacl-long.35",
|
34 |
+
pages = "589--608",
|
35 |
+
abstract = "The labor market is changing rapidly, prompting increased interest in the automatic extraction of occupational skills from text. With the advent of English benchmark job description datasets, there is a need for systems that handle their diversity well. We tackle the complexity in occupational skill datasets tasks{---}combining and leveraging multiple datasets for skill extraction, to identify rarely observed skills within a dataset, and overcoming the scarcity of skills across datasets. In particular, we investigate the retrieval-augmentation of language models, employing an external datastore for retrieving similar skills in a dataset-unifying manner. Our proposed method, \textbf{N}earest \textbf{N}eighbor \textbf{O}ccupational \textbf{S}kill \textbf{E}xtraction (NNOSE) effectively leverages multiple datasets by retrieving neighboring skills from other datasets in the datastore. This improves skill extraction \textit{without} additional fine-tuning. Crucially, we observe a performance gain in predicting infrequent patterns, with substantial gains of up to 30{\%} span-F1 in cross-dataset settings.",
|
36 |
}
|
37 |
```
|