jjmcarrascosa commited on
Commit
9940e5c
1 Parent(s): 74d8b4d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.26 +/- 21.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e47efabec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e47efabecb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e47efabed40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e47efabedd0>", "_build": "<function ActorCriticPolicy._build at 0x7e47efabee60>", "forward": "<function ActorCriticPolicy.forward at 0x7e47efabeef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e47efabef80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e47efabf010>", "_predict": "<function ActorCriticPolicy._predict at 0x7e47efabf0a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e47efabf130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e47efabf1c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e47efabf250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e47efa5fd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702039365538876554, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMjtj1ZD/w+gkG+vQ72br5TuDO8f8WSvAAAAAAAAAAA3aVYvu0qAb1Vx1a8XUP7ug7xYD6+mL07AACAPwAAgD8APgG8BUTeuxu0Mjzd4KQ8whEpvdr7iT0AAIA/AACAPzMQAz2cWhw9Hhe1vbJbi75kVQg9nQOTvQAAAAAAAAAAM+MgPDo0MD4kZEK83eF4vtGTdTwbZ5s8AAAAAAAAAACgdzI+2FGwPm+fCb43yWy+IHIWPcA7SL0AAAAAAAAAAM08iTwfAKO7Th8xPDQNiDw9kQe93RtoPQAAgD8AAIA/mk6EPYXwiDyuGMi9gGCTvnMrrD1A6968AAAAAAAAAAAzNwC92x+4PRJ/AroM3HG+gUXfPPPHE70AAAAAAAAAACYfHz4dGKI/c2QeP/Xs6r7npDw+HRfSPgAAAAAAAAAAs3MWPRR8l7q1+Iw7kOmOPMettTvQjHi9AACAPwAAgD+aaPg8KYBXujR1xbInQlyw0IE7udrQpzMAAIA/AACAP8Crk71+SaY/pA40vzP9Db/Ega48hte5vQAAAAAAAAAA8xO0PTjybz99noA9Fr+dvq3VtT2ipMM8AAAAAAAAAADNlFq8FHygusjNZrnXciu0rIe3uqL6hDgAAIA/AACAP80cL77dUFw/Wc0EPqQIVr4RDty9cj0CPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEJbMs6JZaMAWyUTSIBjAF0lEdAlVDx/mT1TXV9lChoBkdAcHc0Nz8xbmgHTZsBaAhHQJVRSBe5Wil1fZQoaAZHQHCH1ivxH5JoB01DAWgIR0CVUvPEKmbcdX2UKGgGR0BryPSDyvs7aAdNvwFoCEdAlVOh0IToMnV9lChoBkdAbzbWuHN5dGgHTWwBaAhHQJVUk189fTl1fZQoaAZHQG2YMhgVoHtoB00zAWgIR0CVVcyeI2wWdX2UKGgGR0BuUizC1qnFaAdNgAFoCEdAlVZfPw/gSHV9lChoBkdAbmml6Z6Uq2gHTTYBaAhHQJVYUyEcsDp1fZQoaAZHQG93XhOxjaxoB01zAWgIR0CVWGgzxgAqdX2UKGgGR0BhjQMlTm4iaAdN6ANoCEdAlVqc7U5MlHV9lChoBkdAbhiMGX5WR2gHTU4BaAhHQJVz10hePaN1fZQoaAZHQHDAU/r0J4VoB02dAWgIR0CVdHUjs2NvdX2UKGgGR0Bwo8xqO939aAdNjAFoCEdAlXT4yO7xu3V9lChoBkdAbHOXv6TGHmgHTUgBaAhHQJV1DB2wFC91fZQoaAZHQHEccX7+DOFoB01QAWgIR0CVdVsasIVudX2UKGgGR0BxWSw/xDsuaAdNMgFoCEdAlXZPfCQ9zXV9lChoBkdAb556po9LYmgHTXEBaAhHQJV5FCswL3N1fZQoaAZHQHBJI8yN4qxoB01UAWgIR0CVefdiUgSwdX2UKGgGR0BtbpwQ176YaAdNTwFoCEdAlXqBkNFz+3V9lChoBkdAcCTZCOWBz2gHTZYBaAhHQJWAEH7gsK91fZQoaAZHQG7QQSamXPZoB02GAWgIR0CVgPV2A5JcdX2UKGgGR0Bww3G3nZCfaAdNXgFoCEdAlYI4Chew93V9lChoBkdAcPkPp6hQFmgHTXABaAhHQJWDI4dZJTV1fZQoaAZHQG1Zg3Lmp2loB01JAWgIR0CVhCcWj45+dX2UKGgGR0Bx5gY8+zMSaAdNIwFoCEdAlYS1r/Khc3V9lChoBkdAbKXZJTVDr2gHTUMBaAhHQJWE0ORT0g91fZQoaAZHQFyhGsV+I/JoB03oA2gIR0CVhX1JDmbLdX2UKGgGR0BrtgXIlt0naAdNVAFoCEdAlYZU2pAD73V9lChoBkdAckpNd7fHgmgHTU8BaAhHQJWGlnnMdLh1fZQoaAZHQHHjvLPldTpoB01eAWgIR0CVh3kgOjIrdX2UKGgGR0Bt1HWlMyrQaAdNZwFoCEdAlYiwzDXOGHV9lChoBkdAbaFZTyauwGgHTT4BaAhHQJWJrBGhEjR1fZQoaAZHQHG+mMGX5WRoB016AWgIR0CVjIeTmnwYdX2UKGgGR0Bwgq7FsHjZaAdNOwFoCEdAlZB0vsZ5zHV9lChoBkdAcRzQtSQ5m2gHTS8BaAhHQJWSDTUiILx1fZQoaAZHQG8qlEAo5PxoB02OAWgIR0CVkikl/pdKdX2UKGgGR0BwYBU5uIhyaAdNhgFoCEdAlZJ2St/4I3V9lChoBkdAbsZIzWPLgWgHTVYBaAhHQJWSwFB6a9d1fZQoaAZHQG3U1UVBUrFoB01UAWgIR0CVkxyn1nM/dX2UKGgGR0BqnOKGcnVoaAdNWQFoCEdAlZNloYekpXV9lChoBkdAbsxRQaaTfWgHTWABaAhHQJWU9gnc+JR1fZQoaAZHQHB7KnJkoWpoB01eAWgIR0CVlTMI/qxDdX2UKGgGR0BwVvYXfqHHaAdNaQFoCEdAlZaYnv2GqXV9lChoBkdAcYw3rleWwGgHTT8BaAhHQJWXkP/aQFN1fZQoaAZHQHJH0MCtA9poB01xAWgIR0CVmEGu9vjwdX2UKGgGR0Bx+cQ7LdN4aAdNJwJoCEdAlZlq814xDnV9lChoBkdAbG4r9VFQVWgHTUoBaAhHQJWad8XvYvp1fZQoaAZHQGBiuJDVpbloB03oA2gIR0CVm0qeK8+SdX2UKGgGR0BwC0jv/io9aAdNFQFoCEdAlZyuzt1IRXV9lChoBkdAbAWitaIN3GgHTR8BaAhHQJWc/jFQ2uR1fZQoaAZHQHHCc4ku6EtoB00VAWgIR0CVnR1RtP56dX2UKGgGR0BwQWbnX/YKaAdNaQFoCEdAlZ6kse4kNXV9lChoBkdAcb9XcQAdXGgHTUUBaAhHQJWetv863iJ1fZQoaAZHQHHPg1WKdhBoB01uAWgIR0CVvDPxx1gZdX2UKGgGR0Bu4oYDTz/ZaAdNZwFoCEdAlbw0Hpr1unV9lChoBkdAbjlVI7Njb2gHTUYBaAhHQJW8al+EytV1fZQoaAZHQHCpfjCHh0hoB00yAWgIR0CVvi2ycCo1dX2UKGgGR0BwngABDG96aAdNcwFoCEdAlb5BEWqLj3V9lChoBkdAb8kjPfKp1mgHTVwBaAhHQJW+spMHryF1fZQoaAZHQHFsUG3WnTBoB006AWgIR0CVvxs6aLGadX2UKGgGR0BxsL+glF+eaAdNJAFoCEdAlb9vC66J7HV9lChoBkdAX6loXbdrPGgHTegDaAhHQJW/iMYMvyt1fZQoaAZHQG78YPGyX2NoB00rAWgIR0CVwSqvvBrOdX2UKGgGR0Bwc1k4FRpDaAdNQQFoCEdAlcErGNrCWXV9lChoBkdAcHy+NtIkJWgHTScBaAhHQJXCLN0NjLB1fZQoaAZHQHF4fO2RaHNoB00/AWgIR0CVwy6CUX54dX2UKGgGR0BuLDYmLLpzaAdNOwFoCEdAlcMqFM7EHnV9lChoBkdAbEPJVbRne2gHTVwBaAhHQJXFxWCEpRZ1fZQoaAZHQG2A4R/ViF1oB01HAWgIR0CVx4x2B8QadX2UKGgGR0Btp2q94/u9aAdNXwFoCEdAlchd3OfNA3V9lChoBkdAbmBFaSs8xWgHTWUBaAhHQJXIn+uNgjR1fZQoaAZHQG/1Amqo60ZoB003AWgIR0CVykUg0TDgdX2UKGgGR0BvRm3jMmngaAdNYwFoCEdAlcrzzZpSJnV9lChoBkdAchM8BMi8nWgHTVQBaAhHQJXK/sY2sJZ1fZQoaAZHQG+KnbypaRpoB01DAWgIR0CVyz1VHWjHdX2UKGgGR0BwEuZ4Oc2BaAdNRAFoCEdAlctmYv38GnV9lChoBkdAbgaQT238XWgHTYYBaAhHQJXMSD28IzF1fZQoaAZHQHDlvxDst05oB002AWgIR0CVzMmJ3xFzdX2UKGgGR0AijqptJnQIaAdL/mgIR0CVzSdOqNp/dX2UKGgGR0BwDarZJ04jaAdNUwFoCEdAlc20l3QlbHV9lChoBkdAcUHhq0tyxWgHTU0BaAhHQJXOmPxQSBd1fZQoaAZHQHHqlBdD6WRoB00oAWgIR0CV0QU83dbgdX2UKGgGR0Bwh+ykbgjyaAdNdgFoCEdAldEzhxYJV3V9lChoBkdAcESDSgGr0mgHTTMBaAhHQJXTIrPMSsd1fZQoaAZHQHA/n13+uNhoB001AWgIR0CV0/Y150KadX2UKGgGR0BxLD7IkqtpaAdNLgFoCEdAldanU+cH4XV9lChoBkdAcc7c6/7BPGgHTWoBaAhHQJXWp/vv0Ad1fZQoaAZHQGtIpPhybQVoB01PAWgIR0CV1yRqoIfKdX2UKGgGR0Bwu8gGKQ7taAdNPwFoCEdAldcvGEPDpHV9lChoBkdAcMq3T/hl2GgHTUMBaAhHQJXXT2WY4Q11fZQoaAZHQHApH/kvK2doB01eAWgIR0CV2MM8HObBdX2UKGgGR0Bu46PKdQO4aAdNNQFoCEdAldkxBeHBUXV9lChoBkdAcYHO8kD6nGgHTVEBaAhHQJXZSbWmP5p1fZQoaAZHQHNpKgyuZCxoB00iAWgIR0CV2hdrftQbdX2UKGgGR0BwVRWKdhAoaAdNFAFoCEdAldwZ71Iy03V9lChoBkdAcM810knkUGgHTXYBaAhHQJXcJmbsniN1fZQoaAZHQG+GHAqNIbxoB01SAWgIR0CV3qEJSiuddX2UKGgGR0BkIRJ2+wkgaAdN6ANoCEdAld849HMEBHV9lChoBkdAcJ5aIvalDWgHTUsBaAhHQJXhFQSBbwB1fZQoaAZHQGy6o+4b0e5oB01rAWgIR0CV4aGGVRk3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2e6badc9c678eadb2dac14f9abeba7d782f4090a49f4aced3e34cfc34903bf
3
+ size 148054
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e47efabec20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e47efabecb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e47efabed40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e47efabedd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e47efabee60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e47efabeef0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e47efabef80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e47efabf010>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e47efabf0a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e47efabf130>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e47efabf1c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e47efabf250>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e47efa5fd80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1702039365538876554,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMjtj1ZD/w+gkG+vQ72br5TuDO8f8WSvAAAAAAAAAAA3aVYvu0qAb1Vx1a8XUP7ug7xYD6+mL07AACAPwAAgD8APgG8BUTeuxu0Mjzd4KQ8whEpvdr7iT0AAIA/AACAPzMQAz2cWhw9Hhe1vbJbi75kVQg9nQOTvQAAAAAAAAAAM+MgPDo0MD4kZEK83eF4vtGTdTwbZ5s8AAAAAAAAAACgdzI+2FGwPm+fCb43yWy+IHIWPcA7SL0AAAAAAAAAAM08iTwfAKO7Th8xPDQNiDw9kQe93RtoPQAAgD8AAIA/mk6EPYXwiDyuGMi9gGCTvnMrrD1A6968AAAAAAAAAAAzNwC92x+4PRJ/AroM3HG+gUXfPPPHE70AAAAAAAAAACYfHz4dGKI/c2QeP/Xs6r7npDw+HRfSPgAAAAAAAAAAs3MWPRR8l7q1+Iw7kOmOPMettTvQjHi9AACAPwAAgD+aaPg8KYBXujR1xbInQlyw0IE7udrQpzMAAIA/AACAP8Crk71+SaY/pA40vzP9Db/Ega48hte5vQAAAAAAAAAA8xO0PTjybz99noA9Fr+dvq3VtT2ipMM8AAAAAAAAAADNlFq8FHygusjNZrnXciu0rIe3uqL6hDgAAIA/AACAP80cL77dUFw/Wc0EPqQIVr4RDty9cj0CPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEJbMs6JZaMAWyUTSIBjAF0lEdAlVDx/mT1TXV9lChoBkdAcHc0Nz8xbmgHTZsBaAhHQJVRSBe5Wil1fZQoaAZHQHCH1ivxH5JoB01DAWgIR0CVUvPEKmbcdX2UKGgGR0BryPSDyvs7aAdNvwFoCEdAlVOh0IToMnV9lChoBkdAbzbWuHN5dGgHTWwBaAhHQJVUk189fTl1fZQoaAZHQG2YMhgVoHtoB00zAWgIR0CVVcyeI2wWdX2UKGgGR0BuUizC1qnFaAdNgAFoCEdAlVZfPw/gSHV9lChoBkdAbmml6Z6Uq2gHTTYBaAhHQJVYUyEcsDp1fZQoaAZHQG93XhOxjaxoB01zAWgIR0CVWGgzxgAqdX2UKGgGR0BhjQMlTm4iaAdN6ANoCEdAlVqc7U5MlHV9lChoBkdAbhiMGX5WR2gHTU4BaAhHQJVz10hePaN1fZQoaAZHQHDAU/r0J4VoB02dAWgIR0CVdHUjs2NvdX2UKGgGR0Bwo8xqO939aAdNjAFoCEdAlXT4yO7xu3V9lChoBkdAbHOXv6TGHmgHTUgBaAhHQJV1DB2wFC91fZQoaAZHQHEccX7+DOFoB01QAWgIR0CVdVsasIVudX2UKGgGR0BxWSw/xDsuaAdNMgFoCEdAlXZPfCQ9zXV9lChoBkdAb556po9LYmgHTXEBaAhHQJV5FCswL3N1fZQoaAZHQHBJI8yN4qxoB01UAWgIR0CVefdiUgSwdX2UKGgGR0BtbpwQ176YaAdNTwFoCEdAlXqBkNFz+3V9lChoBkdAcCTZCOWBz2gHTZYBaAhHQJWAEH7gsK91fZQoaAZHQG7QQSamXPZoB02GAWgIR0CVgPV2A5JcdX2UKGgGR0Bww3G3nZCfaAdNXgFoCEdAlYI4Chew93V9lChoBkdAcPkPp6hQFmgHTXABaAhHQJWDI4dZJTV1fZQoaAZHQG1Zg3Lmp2loB01JAWgIR0CVhCcWj45+dX2UKGgGR0Bx5gY8+zMSaAdNIwFoCEdAlYS1r/Khc3V9lChoBkdAbKXZJTVDr2gHTUMBaAhHQJWE0ORT0g91fZQoaAZHQFyhGsV+I/JoB03oA2gIR0CVhX1JDmbLdX2UKGgGR0BrtgXIlt0naAdNVAFoCEdAlYZU2pAD73V9lChoBkdAckpNd7fHgmgHTU8BaAhHQJWGlnnMdLh1fZQoaAZHQHHjvLPldTpoB01eAWgIR0CVh3kgOjIrdX2UKGgGR0Bt1HWlMyrQaAdNZwFoCEdAlYiwzDXOGHV9lChoBkdAbaFZTyauwGgHTT4BaAhHQJWJrBGhEjR1fZQoaAZHQHG+mMGX5WRoB016AWgIR0CVjIeTmnwYdX2UKGgGR0Bwgq7FsHjZaAdNOwFoCEdAlZB0vsZ5zHV9lChoBkdAcRzQtSQ5m2gHTS8BaAhHQJWSDTUiILx1fZQoaAZHQG8qlEAo5PxoB02OAWgIR0CVkikl/pdKdX2UKGgGR0BwYBU5uIhyaAdNhgFoCEdAlZJ2St/4I3V9lChoBkdAbsZIzWPLgWgHTVYBaAhHQJWSwFB6a9d1fZQoaAZHQG3U1UVBUrFoB01UAWgIR0CVkxyn1nM/dX2UKGgGR0BqnOKGcnVoaAdNWQFoCEdAlZNloYekpXV9lChoBkdAbsxRQaaTfWgHTWABaAhHQJWU9gnc+JR1fZQoaAZHQHB7KnJkoWpoB01eAWgIR0CVlTMI/qxDdX2UKGgGR0BwVvYXfqHHaAdNaQFoCEdAlZaYnv2GqXV9lChoBkdAcYw3rleWwGgHTT8BaAhHQJWXkP/aQFN1fZQoaAZHQHJH0MCtA9poB01xAWgIR0CVmEGu9vjwdX2UKGgGR0Bx+cQ7LdN4aAdNJwJoCEdAlZlq814xDnV9lChoBkdAbG4r9VFQVWgHTUoBaAhHQJWad8XvYvp1fZQoaAZHQGBiuJDVpbloB03oA2gIR0CVm0qeK8+SdX2UKGgGR0BwC0jv/io9aAdNFQFoCEdAlZyuzt1IRXV9lChoBkdAbAWitaIN3GgHTR8BaAhHQJWc/jFQ2uR1fZQoaAZHQHHCc4ku6EtoB00VAWgIR0CVnR1RtP56dX2UKGgGR0BwQWbnX/YKaAdNaQFoCEdAlZ6kse4kNXV9lChoBkdAcb9XcQAdXGgHTUUBaAhHQJWetv863iJ1fZQoaAZHQHHPg1WKdhBoB01uAWgIR0CVvDPxx1gZdX2UKGgGR0Bu4oYDTz/ZaAdNZwFoCEdAlbw0Hpr1unV9lChoBkdAbjlVI7Njb2gHTUYBaAhHQJW8al+EytV1fZQoaAZHQHCpfjCHh0hoB00yAWgIR0CVvi2ycCo1dX2UKGgGR0BwngABDG96aAdNcwFoCEdAlb5BEWqLj3V9lChoBkdAb8kjPfKp1mgHTVwBaAhHQJW+spMHryF1fZQoaAZHQHFsUG3WnTBoB006AWgIR0CVvxs6aLGadX2UKGgGR0BxsL+glF+eaAdNJAFoCEdAlb9vC66J7HV9lChoBkdAX6loXbdrPGgHTegDaAhHQJW/iMYMvyt1fZQoaAZHQG78YPGyX2NoB00rAWgIR0CVwSqvvBrOdX2UKGgGR0Bwc1k4FRpDaAdNQQFoCEdAlcErGNrCWXV9lChoBkdAcHy+NtIkJWgHTScBaAhHQJXCLN0NjLB1fZQoaAZHQHF4fO2RaHNoB00/AWgIR0CVwy6CUX54dX2UKGgGR0BuLDYmLLpzaAdNOwFoCEdAlcMqFM7EHnV9lChoBkdAbEPJVbRne2gHTVwBaAhHQJXFxWCEpRZ1fZQoaAZHQG2A4R/ViF1oB01HAWgIR0CVx4x2B8QadX2UKGgGR0Btp2q94/u9aAdNXwFoCEdAlchd3OfNA3V9lChoBkdAbmBFaSs8xWgHTWUBaAhHQJXIn+uNgjR1fZQoaAZHQG/1Amqo60ZoB003AWgIR0CVykUg0TDgdX2UKGgGR0BvRm3jMmngaAdNYwFoCEdAlcrzzZpSJnV9lChoBkdAchM8BMi8nWgHTVQBaAhHQJXK/sY2sJZ1fZQoaAZHQG+KnbypaRpoB01DAWgIR0CVyz1VHWjHdX2UKGgGR0BwEuZ4Oc2BaAdNRAFoCEdAlctmYv38GnV9lChoBkdAbgaQT238XWgHTYYBaAhHQJXMSD28IzF1fZQoaAZHQHDlvxDst05oB002AWgIR0CVzMmJ3xFzdX2UKGgGR0AijqptJnQIaAdL/mgIR0CVzSdOqNp/dX2UKGgGR0BwDarZJ04jaAdNUwFoCEdAlc20l3QlbHV9lChoBkdAcUHhq0tyxWgHTU0BaAhHQJXOmPxQSBd1fZQoaAZHQHHqlBdD6WRoB00oAWgIR0CV0QU83dbgdX2UKGgGR0Bwh+ykbgjyaAdNdgFoCEdAldEzhxYJV3V9lChoBkdAcESDSgGr0mgHTTMBaAhHQJXTIrPMSsd1fZQoaAZHQHA/n13+uNhoB001AWgIR0CV0/Y150KadX2UKGgGR0BxLD7IkqtpaAdNLgFoCEdAldanU+cH4XV9lChoBkdAcc7c6/7BPGgHTWoBaAhHQJXWp/vv0Ad1fZQoaAZHQGtIpPhybQVoB01PAWgIR0CV1yRqoIfKdX2UKGgGR0Bwu8gGKQ7taAdNPwFoCEdAldcvGEPDpHV9lChoBkdAcMq3T/hl2GgHTUMBaAhHQJXXT2WY4Q11fZQoaAZHQHApH/kvK2doB01eAWgIR0CV2MM8HObBdX2UKGgGR0Bu46PKdQO4aAdNNQFoCEdAldkxBeHBUXV9lChoBkdAcYHO8kD6nGgHTVEBaAhHQJXZSbWmP5p1fZQoaAZHQHNpKgyuZCxoB00iAWgIR0CV2hdrftQbdX2UKGgGR0BwVRWKdhAoaAdNFAFoCEdAldwZ71Iy03V9lChoBkdAcM810knkUGgHTXYBaAhHQJXcJmbsniN1fZQoaAZHQG+GHAqNIbxoB01SAWgIR0CV3qEJSiuddX2UKGgGR0BkIRJ2+wkgaAdN6ANoCEdAld849HMEBHV9lChoBkdAcJ5aIvalDWgHTUsBaAhHQJXhFQSBbwB1fZQoaAZHQGy6o+4b0e5oB01rAWgIR0CV4aGGVRk3dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 372,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 6,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b44626ea3f76b0437eb93706d5a8463256ae3aa8ea2c9dc70c7130b99e5f04c1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:088b28db4144cc121849f6f2570d3777c7d27b32e941a3673c4566c4d8c401f0
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (159 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.2581872270963, "std_reward": 21.38665679240911, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-08T13:06:29.609416"}