jirkoru commited on
Commit
e1487c4
1 Parent(s): d9f94a5

uploading the model

Browse files
Files changed (3) hide show
  1. README.md +127 -1
  2. config.json +52 -0
  3. model.pkl +3 -0
README.md CHANGED
@@ -1,3 +1,129 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_file: model.pkl
8
+ widget:
9
+ structuredData:
10
+ angel_n_rounds:
11
+ - 0.0
12
+ - 0.0
13
+ - 0.0
14
+ pre_seed_n_rounds:
15
+ - 0.0
16
+ - 0.0
17
+ - 0.0
18
+ seed_funding:
19
+ - 1250000.0
20
+ - 800000.0
21
+ - 8000000.0
22
+ seed_n_rounds:
23
+ - 1.0
24
+ - 3.0
25
+ - 1.0
26
+ time_first_funding:
27
+ - 1270.0
28
+ - 1856.0
29
+ - 689.0
30
+ time_till_series_a:
31
+ - 1455.0
32
+ - 1667.0
33
+ - 1559.0
34
  ---
35
+
36
+ # Model description
37
+
38
+ [More Information Needed]
39
+
40
+ ## Intended uses & limitations
41
+
42
+ [More Information Needed]
43
+
44
+ ## Training Procedure
45
+
46
+ ### Hyperparameters
47
+
48
+ The model is trained with below hyperparameters.
49
+
50
+ <details>
51
+ <summary> Click to expand </summary>
52
+
53
+ | Hyperparameter | Value |
54
+ |-----------------------------------------------|----------------------------------------------------------------------------------------------------|
55
+ | memory | |
56
+ | steps | [('transformation', ColumnTransformer(transformers=[('min_max_scaler', MinMaxScaler(),<br /> ['time_first_funding', 'seed_funding',<br /> 'time_till_series_a'])])), ('model', LogisticRegression(penalty='none', random_state=0))] |
57
+ | verbose | False |
58
+ | transformation | ColumnTransformer(transformers=[('min_max_scaler', MinMaxScaler(),<br /> ['time_first_funding', 'seed_funding',<br /> 'time_till_series_a'])]) |
59
+ | model | LogisticRegression(penalty='none', random_state=0) |
60
+ | transformation__n_jobs | |
61
+ | transformation__remainder | drop |
62
+ | transformation__sparse_threshold | 0.3 |
63
+ | transformation__transformer_weights | |
64
+ | transformation__transformers | [('min_max_scaler', MinMaxScaler(), ['time_first_funding', 'seed_funding', 'time_till_series_a'])] |
65
+ | transformation__verbose | False |
66
+ | transformation__verbose_feature_names_out | True |
67
+ | transformation__min_max_scaler | MinMaxScaler() |
68
+ | transformation__min_max_scaler__clip | False |
69
+ | transformation__min_max_scaler__copy | True |
70
+ | transformation__min_max_scaler__feature_range | (0, 1) |
71
+ | model__C | 1.0 |
72
+ | model__class_weight | |
73
+ | model__dual | False |
74
+ | model__fit_intercept | True |
75
+ | model__intercept_scaling | 1 |
76
+ | model__l1_ratio | |
77
+ | model__max_iter | 100 |
78
+ | model__multi_class | auto |
79
+ | model__n_jobs | |
80
+ | model__penalty | none |
81
+ | model__random_state | 0 |
82
+ | model__solver | lbfgs |
83
+ | model__tol | 0.0001 |
84
+ | model__verbose | 0 |
85
+ | model__warm_start | False |
86
+
87
+ </details>
88
+
89
+ ### Model Plot
90
+
91
+ The model plot is below.
92
+
93
+ <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;,MinMaxScaler(),[&#x27;time_first_funding&#x27;,&#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])),(&#x27;model&#x27;, LogisticRegression(penalty=&#x27;none&#x27;, random_state=0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;,MinMaxScaler(),[&#x27;time_first_funding&#x27;,&#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])),(&#x27;model&#x27;, LogisticRegression(penalty=&#x27;none&#x27;, random_state=0))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;, MinMaxScaler(),[&#x27;time_first_funding&#x27;, &#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">min_max_scaler</label><div class="sk-toggleable__content"><pre>[&#x27;time_first_funding&#x27;, &#x27;seed_funding&#x27;, &#x27;time_till_series_a&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">MinMaxScaler</label><div class="sk-toggleable__content"><pre>MinMaxScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(penalty=&#x27;none&#x27;, random_state=0)</pre></div></div></div></div></div></div></div>
94
+
95
+ ## Evaluation Results
96
+
97
+ [More Information Needed]
98
+
99
+ # How to Get Started with the Model
100
+
101
+ [More Information Needed]
102
+
103
+ # Model Card Authors
104
+
105
+ This model card is written by following authors:
106
+
107
+ [More Information Needed]
108
+
109
+ # Model Card Contact
110
+
111
+ You can contact the model card authors through following channels:
112
+ [More Information Needed]
113
+
114
+ # Citation
115
+
116
+ Below you can find information related to citation.
117
+
118
+ **BibTeX:**
119
+ ```
120
+ [More Information Needed]
121
+ ```
122
+
123
+ # model_card_authors
124
+
125
+ jirko
126
+
127
+ # model_description
128
+
129
+ just the temporal regression with reduced input features
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "time_first_funding",
5
+ "seed_funding",
6
+ "time_till_series_a",
7
+ "seed_n_rounds",
8
+ "angel_n_rounds",
9
+ "pre_seed_n_rounds"
10
+ ],
11
+ "environment": [
12
+ "scikit-learn=1.1.3"
13
+ ],
14
+ "example_input": {
15
+ "angel_n_rounds": [
16
+ 0.0,
17
+ 0.0,
18
+ 0.0
19
+ ],
20
+ "pre_seed_n_rounds": [
21
+ 0.0,
22
+ 0.0,
23
+ 0.0
24
+ ],
25
+ "seed_funding": [
26
+ 1250000.0,
27
+ 800000.0,
28
+ 8000000.0
29
+ ],
30
+ "seed_n_rounds": [
31
+ 1.0,
32
+ 3.0,
33
+ 1.0
34
+ ],
35
+ "time_first_funding": [
36
+ 1270.0,
37
+ 1856.0,
38
+ 689.0
39
+ ],
40
+ "time_till_series_a": [
41
+ 1455.0,
42
+ 1667.0,
43
+ 1559.0
44
+ ]
45
+ },
46
+ "model": {
47
+ "file": "model.pkl"
48
+ },
49
+ "model_format": "pickle",
50
+ "task": "tabular-classification"
51
+ }
52
+ }
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db86051ca41cbc1efcd37c13ce4c845062a29b3d610808bae8b397fbb1c0d4e5
3
+ size 2054