jinghuanHuggingface
commited on
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 222.66 +/- 23.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb748647010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb7486470a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb748647130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb7486471c0>", "_build": "<function ActorCriticPolicy._build at 0x7eb748647250>", "forward": "<function ActorCriticPolicy.forward at 0x7eb7486472e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb748647370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb748647400>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb748647490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb748647520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb7486475b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb748647640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb748abd340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705418574560819903, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN2Brj7zqwQ/rUCgvDlnm75QSK89OABXvQAAAAAAAAAAY1FXvrJImD8xPBe/Vzf9viOVc74qKz6+AAAAAAAAAAADlG6+/zaoPl70Fj52w4e+uldgvT2UzTsAAAAAAAAAAEAPHr4MqoU/VmR0viHO/749QBW+BmIAvgAAAAAAAAAAg1CwvibtJz/okzM8kffivkb2dr5zSKY9AAAAAAAAAACzonG9YYb3PREWxrxCtli+mt0KvXC7pDwAAAAAAAAAAA1ayr3D1Xq6AC9fuiTPgLUV/SY72SeCOQAAgD8AAAAAAK0/PfZeF7xZ6Qw8JbOtPO+4cT3DNI+9AACAPwAAgD+a12Q+uRGQP7JzaT7qURC/Rc9VPpHAHr0AAAAAAAAAALqRLT7QjNs+6nW2PNJOXr5yycM8XfzRvQAAAAAAAAAAmihUPv2dTz5PfZs8o8NivsrlVD271RM9AAAAAAAAAAAaWOE99gkpPRKSwLseITK+hfyouu+6gjwAAAAAAAAAAI2OvD1JG0Y+sMy4PRKOdr7uPd07bl/SOwAAAAAAAAAA+OiCvh7Eqz61HMM97AI4vgjKUL20T0E9AAAAAAAAAACaAXi7JL2iPpWdLD0kfJu+JHYUPSB2uTwAAAAAAAAAAJq/bbxKvS0+6vPaPTYrV77ySlC8mwAEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGw2axxDLKWMAWyUTSwBjAF0lEdAkaBU87p3YHV9lChoBkdAbThLr5ZbIWgHTRsBaAhHQJGgzMotthx1fZQoaAZHQEQofA9FF2FoB0uraAhHQJGg9toBaLZ1fZQoaAZHQHJWfNu+AVhoB02RAWgIR0CRoRJEH+qBdX2UKGgGR0Bs5tVvMr3CaAdNHAFoCEdAkaFn8n/kvXV9lChoBkdASBoPRRdhRmgHS9BoCEdAkaGL7Gecx3V9lChoBkdAcG2aOxSpBGgHTXEBaAhHQJGi8RTS9dx1fZQoaAZHQHL0PBFd9lVoB00bAWgIR0CRpLU9ZA6ddX2UKGgGR0BuHcUZeiSJaAdNFQFoCEdAkaVnmJWNm3V9lChoBkdAcP+LEUCaJGgHTUkBaAhHQJGnknndO7B1fZQoaAZHQHB1ys8xKxtoB0vvaAhHQJGpGZiNKiB1fZQoaAZHQG2y9ECvHLloB00LAWgIR0CRqh4ZdfLLdX2UKGgGR0BurwOx0MgEaAdNBQFoCEdAkao4eHSF5HV9lChoBkdAbDM0D2alUWgHTV4BaAhHQJGrEF/x2B91fZQoaAZHQG+EeZG8VYZoB009AWgIR0CRq6qNZNfxdX2UKGgGR0BxTKo99tuUaAdNDAFoCEdAka0wcghbGHV9lChoBkdAboNxyXD3umgHTXsCaAhHQJG/YBnzxw11fZQoaAZHQGCkkBsANodoB03oA2gIR0CRwH0vGp++dX2UKGgGR0Btophz/6wdaAdNfgFoCEdAkcGwHE/B33V9lChoBkdAb4CMtK7I1mgHTSsBaAhHQJHCx0KZ2IR1fZQoaAZHQG/vulwcYIloB0vwaAhHQJHDzG5tm+V1fZQoaAZHQHD5+CTUy59oB01PAWgIR0CRxaqvNeMRdX2UKGgGR0BxSfO9nK4haAdL+mgIR0CRxh4NI9TxdX2UKGgGR0Bw1X8baRISaAdNFAFoCEdAkcix4hUzbnV9lChoBkdAbPR1FH8TBmgHTRoBaAhHQJHKnZJ04ip1fZQoaAZHQHB2qQA+6iFoB01FAWgIR0CRy8SydFvydX2UKGgGR0Bvkews5GSZaAdNDwFoCEdAkcy9HUc4pHV9lChoBkdAbrdhqCYkV2gHTTEBaAhHQJHNSZeAuqZ1fZQoaAZHQHAVXUhFEzBoB02EAWgIR0CRzae9zwMIdX2UKGgGR0BxFao2n88+aAdNBwFoCEdAkc5AjhUBGXV9lChoBkdAcF4gGbCrLmgHTTUBaAhHQJHPOYIBzWB1fZQoaAZHQHFY9gfEGaBoB00fAWgIR0CR0BmkWRA9dX2UKGgGR0BvnMO5J9RaaAdNOgFoCEdAkdHzLOiWV3V9lChoBkdAbygvmHP/rGgHTR8BaAhHQJHSk176YVt1fZQoaAZHQGz/S6UaAFxoB02kA2gIR0CR1BjKxLTQdX2UKGgGR0BwVHCsOoYOaAdNPAFoCEdAkdWyZa3ZwnV9lChoBkdAcXAeMyad+WgHTQkBaAhHQJHXsFcIJJJ1fZQoaAZHQG3p0KiO/+NoB028AWgIR0CR2Grbg0j1dX2UKGgGR0BvnlEPUaybaAdNJgFoCEdAkdlBUWEbpHV9lChoBkdAbohIjGDL82gHTXQBaAhHQJHZp4HHFP11fZQoaAZHQGDuxplBhQZoB03oA2gIR0CR2c/hESdwdX2UKGgGR0Bua0TWXkYGaAdNEQFoCEdAkdoCrYGt63V9lChoBkdAXY3beuV5bGgHTegDaAhHQJHaTJMg2ZR1fZQoaAZHQHIIzhHbypdoB01TAWgIR0CR23rT6SDAdX2UKGgGR0BlOuc6NlyzaAdN6ANoCEdAkdvTR+jM3nV9lChoBkdAbwWjzqbBoGgHTYwBaAhHQJHcOvC/Gl11fZQoaAZHQHBS2GqPwNNoB00zAWgIR0CR3gQwblzVdX2UKGgGR0BtIAjjaPCEaAdNDQFoCEdAkeIiFTNt7HV9lChoBkdAcFBWEsasIWgHTSoBaAhHQJHioaAFxGV1fZQoaAZHQHG32jfvWpZoB00PAmgIR0CR5AX5WRzSdX2UKGgGR0BwlT+NtIkJaAdNjQFoCEdAkeSmQSzw+nV9lChoBkdAcX3QGfPHDWgHTTIBaAhHQJHk4oPTXrd1fZQoaAZHQHCzhl6JIlNoB00mAWgIR0CR5Rc1fmcOdX2UKGgGR0BxmW0a6z3RaAdNNgFoCEdAkeUzAJswc3V9lChoBkdAbkwlpoK2KGgHTS0BaAhHQJHmjSH/Lkl1fZQoaAZHQHCc5Fb3XZpoB00hAWgIR0CR5u6eoUBXdX2UKGgGR0By3yUVzp5eaAdNEAJoCEdAkef5zcRDkXV9lChoBkdAb/NbMX7+DWgHTW8BaAhHQJH8Hwuuiex1fZQoaAZHQER6hGpda+xoB0vDaAhHQJH8fTodMkB1fZQoaAZHQHBdmxhUipxoB008AWgIR0CR/OPX05EMdX2UKGgGR0BtIUYXO4XoaAdNGQFoCEdAkgA0Jv5xi3V9lChoBkdAcAZV6/qPfmgHS/1oCEdAkgEB1HOKO3V9lChoBkdAcK2QyhzvJGgHTSIBaAhHQJIC9yo4uK51fZQoaAZHQHE91BMSK3xoB01TAmgIR0CSAxfozN2UdX2UKGgGR0BlKinzg/C7aAdN6ANoCEdAkgVY9TxXn3V9lChoBkdAbM/m4AjptGgHTTABaAhHQJIF4Gkep4t1fZQoaAZHQHENKUmlZYBoB00bAWgIR0CSBj6xPfsNdX2UKGgGR0BugrmU4aP0aAdNCQFoCEdAkgdaYVqN63V9lChoBkdAbeDCiyprDmgHTRYBaAhHQJIIaocaOxV1fZQoaAZHQHDtbrPdEb5oB005AWgIR0CSCSWxQizLdX2UKGgGR0BwgTMINVinaAdNlwFoCEdAkgneQMhHLHV9lChoBkdAYrdGBFuvU2gHTegDaAhHQJILsH7gsK91fZQoaAZHQG5bPTw2ETRoB00rAWgIR0CSDLHHmzSkdX2UKGgGR0ByUVOKwY+CaAdNLwFoCEdAkg2W3vx6OnV9lChoBkdAcH0sE7nxKGgHTTsBaAhHQJIQE+B6KLt1fZQoaAZHQHD03E/B3zNoB00TAWgIR0CSELcpLEk0dX2UKGgGR0Bw155kbxViaAdNGgFoCEdAkhF/ra/RFHV9lChoBkdADAaQV9F4LWgHS8VoCEdAkhHK19fCynV9lChoBkdAcQxITXarWGgHTSEBaAhHQJISH6SDAah1fZQoaAZHQGEdvBJqZc9oB03oA2gIR0CSEx40Mw10dX2UKGgGR0Byk/2criEQaAdNPgFoCEdAkhURmoR7JHV9lChoBkdARYqMzdk8R2gHS8xoCEdAkhXBd6cAinV9lChoBkdAbspcZccENmgHS/poCEdAkhaQYUFjeHV9lChoBkdAb/2Tkhib2GgHTRwBaAhHQJIW1E9dNWV1fZQoaAZHQHDBbR0EHMVoB01rAWgIR0CSF2O6NEPUdX2UKGgGR0Bv6rpNbkfcaAdNLQFoCEdAkhv7sWweNnV9lChoBkdAcHc+KjzqbGgHTTQBaAhHQJIc9yjpLVZ1fZQoaAZHQG4KzCDVYp5oB00cAWgIR0CSHQRgqmTDdX2UKGgGR0BvbDLjghr4aAdNGAFoCEdAkh5uEmICVHV9lChoBkdAYUwfA9FF2GgHTegDaAhHQJIfEG7jDKp1fZQoaAZHQG5UuGKyfL9oB0v+aAhHQJIfk5myxA11fZQoaAZHQGAw/ZVXFLpoB03oA2gIR0CSH/+GGmDUdX2UKGgGR0Bw+io5xR2saAdL/mgIR0CSIFdu5z5odX2UKGgGR0BfZKLn9vS/aAdN6ANoCEdAkiBVQVKwp3V9lChoBkdAaxR18stkF2gHTXQBaAhHQJIglnUUfxN1fZQoaAZHQHAwEOVgQYloB019AmgIR0CSISLZSNwSdX2UKGgGR0BwKwRSP2f1aAdNigFoCEdAkiHHwCr923V9lChoBkdAcBS3Hq/ucGgHTSEBaAhHQJIiKecx0uF1fZQoaAZHQG6e3SBshxJoB00xAWgIR0CSIsbxEv0zdX2UKGgGR0BuptPci4axaAdNLQFoCEdAkiMQZsKsuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c4d1b242ee2b86a27ec7cb0366fdc06c0b89f5dfb104b616c9670fa82bb74ad
|
3 |
+
size 148056
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eb748647010>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb7486470a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb748647130>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb7486471c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eb748647250>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eb7486472e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb748647370>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb748647400>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eb748647490>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb748647520>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb7486475b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb748647640>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eb748abd340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1705418574560819903,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN2Brj7zqwQ/rUCgvDlnm75QSK89OABXvQAAAAAAAAAAY1FXvrJImD8xPBe/Vzf9viOVc74qKz6+AAAAAAAAAAADlG6+/zaoPl70Fj52w4e+uldgvT2UzTsAAAAAAAAAAEAPHr4MqoU/VmR0viHO/749QBW+BmIAvgAAAAAAAAAAg1CwvibtJz/okzM8kffivkb2dr5zSKY9AAAAAAAAAACzonG9YYb3PREWxrxCtli+mt0KvXC7pDwAAAAAAAAAAA1ayr3D1Xq6AC9fuiTPgLUV/SY72SeCOQAAgD8AAAAAAK0/PfZeF7xZ6Qw8JbOtPO+4cT3DNI+9AACAPwAAgD+a12Q+uRGQP7JzaT7qURC/Rc9VPpHAHr0AAAAAAAAAALqRLT7QjNs+6nW2PNJOXr5yycM8XfzRvQAAAAAAAAAAmihUPv2dTz5PfZs8o8NivsrlVD271RM9AAAAAAAAAAAaWOE99gkpPRKSwLseITK+hfyouu+6gjwAAAAAAAAAAI2OvD1JG0Y+sMy4PRKOdr7uPd07bl/SOwAAAAAAAAAA+OiCvh7Eqz61HMM97AI4vgjKUL20T0E9AAAAAAAAAACaAXi7JL2iPpWdLD0kfJu+JHYUPSB2uTwAAAAAAAAAAJq/bbxKvS0+6vPaPTYrV77ySlC8mwAEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGw2axxDLKWMAWyUTSwBjAF0lEdAkaBU87p3YHV9lChoBkdAbThLr5ZbIWgHTRsBaAhHQJGgzMotthx1fZQoaAZHQEQofA9FF2FoB0uraAhHQJGg9toBaLZ1fZQoaAZHQHJWfNu+AVhoB02RAWgIR0CRoRJEH+qBdX2UKGgGR0Bs5tVvMr3CaAdNHAFoCEdAkaFn8n/kvXV9lChoBkdASBoPRRdhRmgHS9BoCEdAkaGL7Gecx3V9lChoBkdAcG2aOxSpBGgHTXEBaAhHQJGi8RTS9dx1fZQoaAZHQHL0PBFd9lVoB00bAWgIR0CRpLU9ZA6ddX2UKGgGR0BuHcUZeiSJaAdNFQFoCEdAkaVnmJWNm3V9lChoBkdAcP+LEUCaJGgHTUkBaAhHQJGnknndO7B1fZQoaAZHQHB1ys8xKxtoB0vvaAhHQJGpGZiNKiB1fZQoaAZHQG2y9ECvHLloB00LAWgIR0CRqh4ZdfLLdX2UKGgGR0BurwOx0MgEaAdNBQFoCEdAkao4eHSF5HV9lChoBkdAbDM0D2alUWgHTV4BaAhHQJGrEF/x2B91fZQoaAZHQG+EeZG8VYZoB009AWgIR0CRq6qNZNfxdX2UKGgGR0BxTKo99tuUaAdNDAFoCEdAka0wcghbGHV9lChoBkdAboNxyXD3umgHTXsCaAhHQJG/YBnzxw11fZQoaAZHQGCkkBsANodoB03oA2gIR0CRwH0vGp++dX2UKGgGR0Btophz/6wdaAdNfgFoCEdAkcGwHE/B33V9lChoBkdAb4CMtK7I1mgHTSsBaAhHQJHCx0KZ2IR1fZQoaAZHQG/vulwcYIloB0vwaAhHQJHDzG5tm+V1fZQoaAZHQHD5+CTUy59oB01PAWgIR0CRxaqvNeMRdX2UKGgGR0BxSfO9nK4haAdL+mgIR0CRxh4NI9TxdX2UKGgGR0Bw1X8baRISaAdNFAFoCEdAkcix4hUzbnV9lChoBkdAbPR1FH8TBmgHTRoBaAhHQJHKnZJ04ip1fZQoaAZHQHB2qQA+6iFoB01FAWgIR0CRy8SydFvydX2UKGgGR0Bvkews5GSZaAdNDwFoCEdAkcy9HUc4pHV9lChoBkdAbrdhqCYkV2gHTTEBaAhHQJHNSZeAuqZ1fZQoaAZHQHAVXUhFEzBoB02EAWgIR0CRzae9zwMIdX2UKGgGR0BxFao2n88+aAdNBwFoCEdAkc5AjhUBGXV9lChoBkdAcF4gGbCrLmgHTTUBaAhHQJHPOYIBzWB1fZQoaAZHQHFY9gfEGaBoB00fAWgIR0CR0BmkWRA9dX2UKGgGR0BvnMO5J9RaaAdNOgFoCEdAkdHzLOiWV3V9lChoBkdAbygvmHP/rGgHTR8BaAhHQJHSk176YVt1fZQoaAZHQGz/S6UaAFxoB02kA2gIR0CR1BjKxLTQdX2UKGgGR0BwVHCsOoYOaAdNPAFoCEdAkdWyZa3ZwnV9lChoBkdAcXAeMyad+WgHTQkBaAhHQJHXsFcIJJJ1fZQoaAZHQG3p0KiO/+NoB028AWgIR0CR2Grbg0j1dX2UKGgGR0BvnlEPUaybaAdNJgFoCEdAkdlBUWEbpHV9lChoBkdAbohIjGDL82gHTXQBaAhHQJHZp4HHFP11fZQoaAZHQGDuxplBhQZoB03oA2gIR0CR2c/hESdwdX2UKGgGR0Bua0TWXkYGaAdNEQFoCEdAkdoCrYGt63V9lChoBkdAXY3beuV5bGgHTegDaAhHQJHaTJMg2ZR1fZQoaAZHQHIIzhHbypdoB01TAWgIR0CR23rT6SDAdX2UKGgGR0BlOuc6NlyzaAdN6ANoCEdAkdvTR+jM3nV9lChoBkdAbwWjzqbBoGgHTYwBaAhHQJHcOvC/Gl11fZQoaAZHQHBS2GqPwNNoB00zAWgIR0CR3gQwblzVdX2UKGgGR0BtIAjjaPCEaAdNDQFoCEdAkeIiFTNt7HV9lChoBkdAcFBWEsasIWgHTSoBaAhHQJHioaAFxGV1fZQoaAZHQHG32jfvWpZoB00PAmgIR0CR5AX5WRzSdX2UKGgGR0BwlT+NtIkJaAdNjQFoCEdAkeSmQSzw+nV9lChoBkdAcX3QGfPHDWgHTTIBaAhHQJHk4oPTXrd1fZQoaAZHQHCzhl6JIlNoB00mAWgIR0CR5Rc1fmcOdX2UKGgGR0BxmW0a6z3RaAdNNgFoCEdAkeUzAJswc3V9lChoBkdAbkwlpoK2KGgHTS0BaAhHQJHmjSH/Lkl1fZQoaAZHQHCc5Fb3XZpoB00hAWgIR0CR5u6eoUBXdX2UKGgGR0By3yUVzp5eaAdNEAJoCEdAkef5zcRDkXV9lChoBkdAb/NbMX7+DWgHTW8BaAhHQJH8Hwuuiex1fZQoaAZHQER6hGpda+xoB0vDaAhHQJH8fTodMkB1fZQoaAZHQHBdmxhUipxoB008AWgIR0CR/OPX05EMdX2UKGgGR0BtIUYXO4XoaAdNGQFoCEdAkgA0Jv5xi3V9lChoBkdAcAZV6/qPfmgHS/1oCEdAkgEB1HOKO3V9lChoBkdAcK2QyhzvJGgHTSIBaAhHQJIC9yo4uK51fZQoaAZHQHE91BMSK3xoB01TAmgIR0CSAxfozN2UdX2UKGgGR0BlKinzg/C7aAdN6ANoCEdAkgVY9TxXn3V9lChoBkdAbM/m4AjptGgHTTABaAhHQJIF4Gkep4t1fZQoaAZHQHENKUmlZYBoB00bAWgIR0CSBj6xPfsNdX2UKGgGR0BugrmU4aP0aAdNCQFoCEdAkgdaYVqN63V9lChoBkdAbeDCiyprDmgHTRYBaAhHQJIIaocaOxV1fZQoaAZHQHDtbrPdEb5oB005AWgIR0CSCSWxQizLdX2UKGgGR0BwgTMINVinaAdNlwFoCEdAkgneQMhHLHV9lChoBkdAYrdGBFuvU2gHTegDaAhHQJILsH7gsK91fZQoaAZHQG5bPTw2ETRoB00rAWgIR0CSDLHHmzSkdX2UKGgGR0ByUVOKwY+CaAdNLwFoCEdAkg2W3vx6OnV9lChoBkdAcH0sE7nxKGgHTTsBaAhHQJIQE+B6KLt1fZQoaAZHQHD03E/B3zNoB00TAWgIR0CSELcpLEk0dX2UKGgGR0Bw155kbxViaAdNGgFoCEdAkhF/ra/RFHV9lChoBkdADAaQV9F4LWgHS8VoCEdAkhHK19fCynV9lChoBkdAcQxITXarWGgHTSEBaAhHQJISH6SDAah1fZQoaAZHQGEdvBJqZc9oB03oA2gIR0CSEx40Mw10dX2UKGgGR0Byk/2criEQaAdNPgFoCEdAkhURmoR7JHV9lChoBkdARYqMzdk8R2gHS8xoCEdAkhXBd6cAinV9lChoBkdAbspcZccENmgHS/poCEdAkhaQYUFjeHV9lChoBkdAb/2Tkhib2GgHTRwBaAhHQJIW1E9dNWV1fZQoaAZHQHDBbR0EHMVoB01rAWgIR0CSF2O6NEPUdX2UKGgGR0Bv6rpNbkfcaAdNLQFoCEdAkhv7sWweNnV9lChoBkdAcHc+KjzqbGgHTTQBaAhHQJIc9yjpLVZ1fZQoaAZHQG4KzCDVYp5oB00cAWgIR0CSHQRgqmTDdX2UKGgGR0BvbDLjghr4aAdNGAFoCEdAkh5uEmICVHV9lChoBkdAYUwfA9FF2GgHTegDaAhHQJIfEG7jDKp1fZQoaAZHQG5UuGKyfL9oB0v+aAhHQJIfk5myxA11fZQoaAZHQGAw/ZVXFLpoB03oA2gIR0CSH/+GGmDUdX2UKGgGR0Bw+io5xR2saAdL/mgIR0CSIFdu5z5odX2UKGgGR0BfZKLn9vS/aAdN6ANoCEdAkiBVQVKwp3V9lChoBkdAaxR18stkF2gHTXQBaAhHQJIglnUUfxN1fZQoaAZHQHAwEOVgQYloB019AmgIR0CSISLZSNwSdX2UKGgGR0BwKwRSP2f1aAdNigFoCEdAkiHHwCr923V9lChoBkdAcBS3Hq/ucGgHTSEBaAhHQJIiKecx0uF1fZQoaAZHQG6e3SBshxJoB00xAWgIR0CSIsbxEv0zdX2UKGgGR0BuptPci4axaAdNLQFoCEdAkiMQZsKsuHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b99d1bc5128f9c4114fee7b616cc68b9fbf5824bef9a7f2680c56f20512c9cc
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7c633009686a0d778238cfb69f9bc11ba21adc3311920b288cb56484e04d5a4
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (169 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 222.65800596951743, "std_reward": 23.90768128169906, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-16T15:51:56.032928"}
|