update model card README.md
Browse files
README.md
CHANGED
@@ -6,21 +6,9 @@ tags:
|
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
8 |
- wer
|
9 |
-
datasets:
|
10 |
-
- jimregan/sbtal_riksdag_asr
|
11 |
model-index:
|
12 |
- name: Whisper Small Sv - Riksdag 100h
|
13 |
-
results:
|
14 |
-
- task:
|
15 |
-
name: Automatic Speech Recognition
|
16 |
-
type: automatic-speech-recognition
|
17 |
-
dataset:
|
18 |
-
name: SBTal Riksdag ASR
|
19 |
-
type: jimregan/sbtal_riksdag_asr
|
20 |
-
metrics:
|
21 |
-
- name: Test WER
|
22 |
-
type: wer
|
23 |
-
value: 720.3756
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -28,12 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
28 |
|
29 |
# Whisper Small Sv - Riksdag 100h
|
30 |
|
31 |
-
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss: 0.
|
34 |
-
- Wer:
|
35 |
-
|
36 |
-
That's not an error, the results really are that bad, and this should not be used by anyone, ever, except to get a good laugh. I'll try to run fine-tuning again, but don't hold your breath.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,17 +45,33 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_steps: 500
|
62 |
-
- training_steps:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
-
| Training Loss | Epoch | Step
|
68 |
-
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
### Framework versions
|
|
|
6 |
- generated_from_trainer
|
7 |
metrics:
|
8 |
- wer
|
|
|
|
|
9 |
model-index:
|
10 |
- name: Whisper Small Sv - Riksdag 100h
|
11 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
16 |
|
17 |
# Whisper Small Sv - Riksdag 100h
|
18 |
|
19 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4977
|
22 |
+
- Wer: 1118.4718
|
|
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_steps: 500
|
48 |
+
- training_steps: 20000
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
|
55 |
+
| 0.1384 | 0.11 | 1000 | 0.4747 | 380.8335 |
|
56 |
+
| 0.1186 | 0.22 | 2000 | 0.4513 | 1032.3900 |
|
57 |
+
| 0.1056 | 0.33 | 3000 | 0.4385 | 582.0427 |
|
58 |
+
| 0.0824 | 0.43 | 4000 | 0.4465 | 574.8907 |
|
59 |
+
| 0.0961 | 0.54 | 5000 | 0.4199 | 1004.9138 |
|
60 |
+
| 0.0939 | 0.65 | 6000 | 0.4478 | 866.2979 |
|
61 |
+
| 0.0758 | 0.76 | 7000 | 0.4384 | 907.9496 |
|
62 |
+
| 0.0741 | 0.87 | 8000 | 0.4264 | 641.1371 |
|
63 |
+
| 0.0692 | 0.98 | 9000 | 0.4206 | 1142.6550 |
|
64 |
+
| 0.0257 | 1.08 | 10000 | 0.4707 | 1152.4312 |
|
65 |
+
| 0.0273 | 1.19 | 11000 | 0.4789 | 1100.2058 |
|
66 |
+
| 0.021 | 1.3 | 12000 | 0.4763 | 1236.1719 |
|
67 |
+
| 0.0163 | 1.41 | 13000 | 0.5035 | 924.8006 |
|
68 |
+
| 0.0183 | 1.52 | 14000 | 0.4911 | 1285.1814 |
|
69 |
+
| 0.024 | 1.63 | 15000 | 0.4861 | 1140.8284 |
|
70 |
+
| 0.0158 | 1.73 | 16000 | 0.4793 | 1181.7597 |
|
71 |
+
| 0.0167 | 1.84 | 17000 | 0.4759 | 1207.3064 |
|
72 |
+
| 0.0231 | 1.95 | 18000 | 0.4801 | 1139.6964 |
|
73 |
+
| 0.0054 | 2.06 | 19000 | 0.4934 | 1114.4842 |
|
74 |
+
| 0.006 | 2.17 | 20000 | 0.4977 | 1118.4718 |
|
75 |
|
76 |
|
77 |
### Framework versions
|