xttsv2 / xtts2_modeling.py
jimmyvu's picture
Add model files
5bbc9a7 verified
import asyncio
import functools
import logging
import random
import time
import uuid
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, List, Tuple, Union, AsyncGenerator, Dict, Any
from concurrent.futures import ThreadPoolExecutor
import librosa
import torch
import numpy as np
import torchaudio
import sounddevice as sd
import io
from torch import nn
from IPython.display import Audio, display
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams, TokensPrompt, RequestOutput
from vllm.multimodal import MultiModalDataDict
from vllm.utils import Counter
from TTS.TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder # noqa
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler # noqa
from .xtts2_config import XTTSConfig, XTTSGPTConfig
from .tokenizer import XTTSTokenizerFast
from ..xtts2_gpt.xtts2_gpt_modeling import LearnedPositionEmbeddings
def wav_to_mel_cloning(
wav,
mel_norms_file="../experiments/clips_mel_norms.pth",
mel_norms=None,
device=torch.device("cpu"),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
):
mel_stft = torchaudio.transforms.MelSpectrogram(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
power=power,
normalized=normalized,
sample_rate=sample_rate,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
norm="slaney",
).to(device)
wav = wav.to(device)
mel = mel_stft(wav)
mel = torch.log(torch.clamp(mel, min=1e-5))
if mel_norms is None:
mel_norms = torch.load(mel_norms_file, map_location=device)
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
return mel
def load_audio(audiopath, sampling_rate):
audio, lsr = torchaudio.load(audiopath)
# Stereo to mono if needed
if audio.size(0) != 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Clip audio invalid values
audio.clip_(-1, 1)
return audio
@dataclass
class XTTSRequest:
"""Container for XTTS inference request data"""
request_id: str
text: Union[AsyncGenerator[str, None], str]
language: str
speaker_file: str # Path to the speaker audio file
generate_every_n_chars: Optional[int] = None
temperature: float = 0.75
top_p: float = 0.85
top_k: int = 50
repetition_penalty: float = 5.0
length_penalty: float = 1.0
do_sample: bool = True
max_ref_length: int = 60
gpt_cond_len: int = 30
gpt_cond_chunk_len: int = 4
import threading
class HiddenStatesCollector:
def __init__(self):
self.outputs = {}
self.lock = threading.Lock()
def __call__(self, outputs: Optional[torch.Tensor], request_id: str):
"""Save outputs for a specific request"""
with self.lock:
if request_id not in self.outputs:
self.outputs[request_id] = []
self.outputs[request_id].append(outputs)
def get_hidden_states(self, request_id) -> Optional[torch.Tensor]:
with self.lock:
outputs = self.outputs.pop(request_id, None)
if outputs is not None:
outputs = torch.cat(outputs, dim=0)
return outputs
def bind_to_request(self, request_id: str):
def bound_collector(outputs: Optional[torch.Tensor], _request_id: str = None):
self(outputs, request_id)
return bound_collector
class ExtendedSamplingParams(SamplingParams, kw_only=True):
"""Extended sampling parameters that allows additional fields while maintaining compatibility with SamplingParams.
This class inherits from SamplingParams and allows adding new required fields
without conflicting with the base class's optional fields ordering.
"""
hidden_state_collector: HiddenStatesCollector # New required field
class LogitsRepetitionPenalizer:
"""A logits processor that applies repetition penalty to prevent repetitive text generation."""
def __init__(self, repetition_penalty: float):
if repetition_penalty < 0:
raise ValueError("Repetition penalty must be non-negative")
self.repetition_penalty = repetition_penalty
def __call__(self, token_ids: List[int], logits: torch.Tensor) -> torch.Tensor:
"""Apply repetition penalty to the logits based on previous tokens."""
# If no repetition penalty or no tokens to check, return original logits
if self.repetition_penalty == 1.0 or not token_ids:
return logits
# Create a mask for the repeated tokens
repeated_tokens = torch.tensor(token_ids,
device=logits.device,
dtype=torch.long)
# Get logits of repeated tokens
repeated_logits = logits[repeated_tokens]
# Apply penalty: divide positive logits by penalty, multiply negative logits by penalty
repeated_logits = torch.where(
repeated_logits > 0,
repeated_logits / self.repetition_penalty,
repeated_logits * self.repetition_penalty
)
# Update only the logits for repeated tokens
logits[repeated_tokens] = repeated_logits
return logits
@dataclass
class XTTSOutput:
"""Container for XTTS inference output with integrated audio utilities"""
request_id: str
wav: np.ndarray
sample_rate: int = 24000
def to_tensor(self) -> torch.Tensor:
"""Convert numpy array to torch tensor"""
if isinstance(self.wav, np.ndarray):
return torch.from_numpy(self.wav)
return self.wav
def to_bytes(self, format: str = 'wav', sample_width: int = 2) -> bytes:
"""Convert audio to bytes format.
Args:
format: Output format ('wav' or 'raw')
sample_width: Bit depth (1, 2, or 4 bytes per sample)
Returns:
Audio data as bytes
"""
# Convert to tensor if needed
wav_tensor = self.to_tensor()
# Ensure correct shape (1, N) for torchaudio
if wav_tensor.dim() == 1:
wav_tensor = wav_tensor.unsqueeze(0)
# Normalize to [-1, 1]
wav_tensor = torch.clamp(wav_tensor, -1.0, 1.0)
if format == 'wav':
buffer = io.BytesIO()
torchaudio.save(
buffer,
wav_tensor,
self.sample_rate,
format="wav",
encoding="PCM_S" if sample_width == 2 else "PCM_F",
bits_per_sample=sample_width * 8
)
return buffer.getvalue()
elif format == 'raw':
# Scale to appropriate range based on sample width
if sample_width == 2: # 16-bit
wav_tensor = (wav_tensor * 32767).to(torch.int16)
elif sample_width == 4: # 32-bit
wav_tensor = (wav_tensor * 2147483647).to(torch.int32)
else: # 8-bit
wav_tensor = (wav_tensor * 127).to(torch.int8)
return wav_tensor.cpu().numpy().tobytes()
else:
raise ValueError(f"Unsupported format: {format}")
def save(self,
filename: Union[str, Path],
sample_rate: Optional[int] = None,
format: Optional[str] = None) -> None:
"""Save audio to file.
Args:
filename: Output filename
sample_rate: Optional new sample rate for resampling
format: Optional format override (default: inferred from extension)
"""
wav_tensor = self.to_tensor()
if wav_tensor.dim() == 1:
wav_tensor = wav_tensor.unsqueeze(0)
# Resample if needed
if sample_rate and sample_rate != self.sample_rate:
wav_tensor = torchaudio.functional.resample(
wav_tensor,
orig_freq=self.sample_rate,
new_freq=sample_rate
)
else:
sample_rate = self.sample_rate
torchaudio.save(
filename,
wav_tensor,
sample_rate,
format=format
)
def resample(self, new_sample_rate: int) -> 'XTTSOutput':
"""Create new XTTSOutput with resampled audio.
Args:
new_sample_rate: Target sample rate
Returns:
New XTTSOutput instance with resampled audio
"""
wav_tensor = self.to_tensor()
if wav_tensor.dim() == 1:
wav_tensor = wav_tensor.unsqueeze(0)
resampled = torchaudio.functional.resample(
wav_tensor,
orig_freq=self.sample_rate,
new_freq=new_sample_rate
)
return XTTSOutput(
request_id=self.request_id,
wav=resampled.squeeze().numpy(),
sample_rate=new_sample_rate
)
def get_info(self) -> Tuple[int, int, float]:
"""Get audio information.
Returns:
Tuple of (number of samples, sample rate, duration in seconds)
"""
n_samples = len(self.wav)
duration = n_samples / self.sample_rate
return n_samples, self.sample_rate, duration
@classmethod
def from_tensor(cls, request_id: str, tensor: torch.Tensor, sample_rate: int = 24000) -> 'XTTSOutput':
"""Create XTTSOutput from torch tensor.
Args:
request_id: Request identifier
tensor: Audio tensor
sample_rate: Sample rate of the audio
Returns:
New XTTSOutput instance
"""
return cls(
request_id=request_id,
wav=tensor.squeeze().cpu().numpy(),
sample_rate=sample_rate
)
@classmethod
def from_file(cls, request_id: str, filename: Union[str, Path]) -> 'XTTSOutput':
"""Create XTTSOutput from audio file.
Args:
request_id: Request identifier
filename: Path to audio file
Returns:
New XTTSOutput instance
"""
wav_tensor, sample_rate = torchaudio.load(filename)
return cls.from_tensor(request_id, wav_tensor, sample_rate)
def play(self) -> None:
"""Play the audio through the default sound device.
For use in regular Python scripts/applications."""
# Ensure the audio is in the correct format
if isinstance(self.wav, torch.Tensor):
audio_data = self.wav.cpu().numpy()
else:
audio_data = self.wav
# Ensure float32 and normalize
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
audio_data = np.clip(audio_data, -1.0, 1.0)
# Play the audio
sd.play(audio_data, self.sample_rate)
sd.wait() # Wait until the audio is finished playing
def display(self) -> Optional[Audio]:
"""Display audio player in Jupyter notebook.
Returns Audio widget if in notebook, None otherwise."""
try:
# Convert to bytes
audio_bytes = self.to_bytes(format='wav')
# Create and display audio widget
audio_widget = Audio(audio_bytes, rate=self.sample_rate, autoplay=False)
display(audio_widget)
return audio_widget
except Exception as e:
print(f"Could not display audio widget: {str(e)}")
print("Try using .play() method instead")
return None
def preview(self) -> None:
"""Smart play method that chooses appropriate playback method."""
try:
# Try notebook display first
if self.display() is None:
# Fall back to sounddevice if not in notebook
self.play()
except Exception as e:
print(f"Error playing audio: {str(e)}")
class Xtts(nn.Module):
"""Async XTTS model implementation using VLLM's AsyncEngine."""
def __init__(self, hifi_config: XTTSConfig, gpt_config: XTTSGPTConfig, tensor_parallel_size: int = 1, **kwargs):
super().__init__()
self.hifi_config = hifi_config
self.gpt_config = gpt_config
self.mel_bos_token_id = gpt_config.start_audio_token
self.mel_eos_token_id = gpt_config.stop_audio_token
self.tp = tensor_parallel_size
self.tokenizer = XTTSTokenizerFast.from_pretrained("AstraMindAI/xtts2-gpt")
self.request_counter = Counter()
self.executor = ThreadPoolExecutor(max_workers=4) # For CPU-bound tasks
self.hidden_states_collector = HiddenStatesCollector()
# Register buffer before creating modules
self.register_buffer("mel_stats", torch.ones(80))
# Initialize all nn.Module components
self.conditioning_encoder = ConditioningEncoder(
gpt_config.audio_config.mel_channels,
gpt_config.hidden_size,
num_attn_heads=gpt_config.num_attention_heads
)
self.text_embedding = nn.Embedding(
gpt_config.number_text_tokens,
gpt_config.hidden_size
)
self.text_pos_embedding = (
LearnedPositionEmbeddings(
gpt_config.max_text_tokens + 2,
gpt_config.hidden_size,
supports_pp=False
)
if gpt_config.max_audio_tokens != -1
else functools.partial(gpt_config.null_position_embeddings, dim=gpt_config.hidden_size)
)
if gpt_config.use_perceiver_resampler:
self.conditioning_perceiver = PerceiverResampler(
dim=gpt_config.hidden_size,
depth=2,
dim_context=gpt_config.hidden_size,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
)
# Initialize HiFi-GAN decoder
self.hifigan_decoder = HifiDecoder(
input_sample_rate=self.hifi_config.input_sample_rate,
output_sample_rate=self.hifi_config.output_sample_rate,
output_hop_length=self.hifi_config.output_hop_length,
ar_mel_length_compression=self.hifi_config.gpt_code_stride_len,
decoder_input_dim=self.hifi_config.decoder_input_dim,
d_vector_dim=self.hifi_config.d_vector_dim,
cond_d_vector_in_each_upsampling_layer=self.hifi_config.cond_d_vector_in_each_upsampling_layer,
)
# Kept for model loading purposes
self.text_head = nn.Linear(gpt_config.hidden_size, gpt_config.number_text_tokens, bias=True)
self.final_norm = nn.LayerNorm(gpt_config.hidden_size, eps=1e-5, bias=True)
# Initialize VLLM engine at the end
self.init_vllm_engine()
# Semaphore for concurrency control
self.max_concurrency = 10
self.semaphore = asyncio.BoundedSemaphore(self.max_concurrency)
def half(self):
# We cannot permit downcasting since it will throw an error while padding
return
def to(self, *args, **kwargs):
# Block downcasting
dtype = kwargs.get('dtype', None)
if dtype == torch.float16 or dtype == torch.bfloat16:
kwargs['dtype'] = torch.float32
elif len(args) > 0 and (args[0] == torch.float16 or args[0] == torch.bfloat16):
args = list(args)
args[0] = torch.float32
args = tuple(args)
return super().to(*args, **kwargs)
@property
def device(self):
"""Get the current device of the model."""
return next(self.parameters()).device
@property
def dtype(self):
"""Get the current dtype of the model."""
return next(self.parameters()).dtype
@staticmethod
def get_memory_percentage(memory: int) -> float:
"""Get memory percentage."""
total_memory = torch.cuda.get_device_properties(0).total_memory
reserved_memory = torch.cuda.memory_reserved(0)
allocated_memory = torch.cuda.memory_allocated(0)
available_memory = total_memory - reserved_memory - allocated_memory
return memory / available_memory
def init_vllm_engine(self):
"""Initialize models with AsyncVLLMEngine."""
engine_args = AsyncEngineArgs(
model="AstraMindAI/xtts2-gpt",
tensor_parallel_size=self.tp,
dtype="auto",
disable_log_stats=True,
max_model_len=self.gpt_config.max_text_tokens + self.gpt_config.max_audio_tokens,
gpu_memory_utilization=self.get_memory_percentage(3 * 1024 ** 3),
trust_remote_code=True,
enforce_eager=True,
limit_mm_per_prompt={"audio": 1},
max_num_batched_tokens=7296,
)
self.llm_engine = AsyncLLMEngine.from_engine_args(engine_args)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str,
torch_dtype: torch.dtype = torch.float32,
device_map: Optional[str] = "auto",
tensor_parallel_size: int = 1,
**kwargs,
) -> "Xtts":
"""Load pretrained XTTS model from HuggingFace Hub."""
from huggingface_hub import hf_hub_download
import json
import os
# Download and load configs
if not os.path.exists(pretrained_model_name_or_path):
config_file = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="config.json"
)
with open(config_file, 'r') as f:
config = json.load(f)
else:
# Load from local path
with open(os.path.join(pretrained_model_name_or_path, "config.json"), 'r') as f:
config = json.load(f)
# Initialize configs
gpt_config = XTTSGPTConfig(**config['gpt_config'])
hifi_config = XTTSConfig(**config)
# Initialize model
model = cls(
hifi_config=hifi_config,
gpt_config=gpt_config,
tensor_parallel_size=tensor_parallel_size,
**kwargs
)
# Load model weights
if not os.path.exists(pretrained_model_name_or_path):
hifigan_weights = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="xtts-v2.safetensors"
)
else:
hifigan_weights = os.path.join(pretrained_model_name_or_path, "xtts-v2.safetensors")
import safetensors.torch
# Load HiFi-GAN weights
hifigan_state = safetensors.torch.load_file(hifigan_weights)
model.load_state_dict(hifigan_state)
# Set model properties
model.config = config
# Cast model to specified dtype
model = model.to(torch_dtype)
model = model.to('cuda')
return model
@staticmethod
def load_audio(audio_path: Union[str, Path], sampling_rate: int = 22050) -> torch.Tensor:
audio, lsr = torchaudio.load(audio_path)
# Stereo to mono if needed
if audio.size(0) != 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Clip audio invalid values
audio.clip_(-1, 1)
return audio
@torch.inference_mode()
def get_speaker_embedding(self, audio, sr):
audio_16k = torchaudio.functional.resample(audio, sr, 16000)
return (
self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True)
.unsqueeze(-1)
.to(self.device)
)
@torch.inference_mode()
def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6):
"""Compute the conditioning latents for the GPT model from the given audio."""
if sr != 22050:
audio = torchaudio.functional.resample(audio, sr, 22050)
if length > 0:
audio = audio[:, : 22050 * length]
if self.gpt_config.use_perceiver_resampler:
style_embs = []
for i in range(0, audio.shape[1], 22050 * chunk_length):
audio_chunk = audio[:, i: i + 22050 * chunk_length]
# if the chunk is too short ignore it
if audio_chunk.size(-1) < 22050 * 0.33:
continue
mel_chunk = wav_to_mel_cloning(
audio_chunk,
mel_norms=self.mel_stats.cpu(),
n_fft=2048,
hop_length=256,
win_length=1024,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
style_emb = self.get_style_emb(mel_chunk.to(self.device), None)
style_embs.append(style_emb)
# mean style embedding
cond_latent = torch.stack(style_embs).mean(dim=0)
else:
mel = wav_to_mel_cloning(
audio,
mel_norms=self.mel_stats.cpu(),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
cond_latent = self.get_style_emb(mel.to(self.device))
return cond_latent.transpose(1, 2)
@torch.inference_mode()
def get_conditioning_latents(
self,
audio_path,
max_ref_length=30,
gpt_cond_len=6,
gpt_cond_chunk_len=6,
librosa_trim_db=None,
sound_norm_refs=False,
load_sr=22050,
):
"""Get the conditioning latents for the GPT model from the given audio."""
# Deal with multiple references
assert isinstance(audio_path, str) or isinstance(audio_path, list), "audio_path must be a string or a list."
if not isinstance(audio_path, list):
audio_paths = [audio_path]
else:
audio_paths = audio_path
speaker_embeddings = []
audios = []
for file_path in audio_paths:
audio = load_audio(file_path, load_sr)
audio = audio[:, : load_sr * max_ref_length].to(self.device).to(self.dtype)
if sound_norm_refs:
audio = (audio / torch.abs(audio).max()) * 0.75
if librosa_trim_db is not None:
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
# Compute latents for the decoder
speaker_embedding = self.get_speaker_embedding(audio, load_sr)
speaker_embeddings.append(speaker_embedding)
audios.append(audio)
# Merge all the audios and compute the latents for the GPT
full_audio = torch.cat(audios, dim=-1)
gpt_cond_latents = self.get_gpt_cond_latents(
full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len
) # [1, 1024, T]
speaker_embedding = torch.stack(speaker_embeddings)
speaker_embedding = speaker_embedding.mean(dim=0)
return gpt_cond_latents, speaker_embedding
def get_style_emb(self, cond_input: torch.Tensor, return_latent: bool = False) -> torch.Tensor:
"""Get conditioning embeddings from mel spectrograms."""
if not return_latent:
if cond_input.ndim == 4:
cond_input = cond_input.squeeze(1)
conds = self.conditioning_encoder(cond_input)
if hasattr(self, 'conditioning_perceiver'):
conds = self.conditioning_perceiver(
conds.permute(0, 2, 1)
).transpose(1, 2)
else:
conds = cond_input.unsqueeze(1)
return conds
async def prepare_text_tokens_async(self, text: str, language: str, split_text=False) \
-> Tuple[List[Union[int, List[int]]], List[torch.Tensor]]:
"""Prepare text tokens for the given text and language."""
async def elaborate_tokens(text_tokens: List[int]) -> torch.Tensor:
text_tokens.insert(0, self.tokenizer.bos_token_id)
text_tokens.append(self.tokenizer.eos_token_id)
return torch.tensor(text_tokens).unsqueeze(0).to(self.text_embedding.weight.device)
async def embed_tokens(text_tokens: Union[torch.Tensor, List[torch.Tensor]]) -> List[torch.Tensor]:
embeds = []
if isinstance(text_tokens, list):
for list_element in text_tokens:
embeds.append(self.text_embedding(list_element) + self.text_pos_embedding(list_element))
else:
embeds.append(self.text_embedding(text_tokens) + self.text_pos_embedding(text_tokens))
return embeds
fake_tokens_for_audio_generation = []
if split_text:
text_tokens = self.tokenizer.batch_encode_with_split(text, lang=[language])
for idx, text_token in enumerate(text_tokens):
text_tokens[idx] = await elaborate_tokens(text_token)
fake_tokens_for_audio_generation.append([1] * len(text_token))
else:
text_tokens = self.tokenizer.batch_encode(text, lang=[language])
text_tokens = await elaborate_tokens(text_tokens)
fake_tokens_for_audio_generation = [1] * len(text_tokens)
return fake_tokens_for_audio_generation, await embed_tokens(text_tokens)
async def prepare_inputs_async(self, text: str, language: str, speaker_file: Union[str, Path],
max_ref_length: int, gpt_cond_len: int, gpt_cond_chunk_len: int, split_text: bool) \
-> Tuple[List[List[int]], List[torch.Tensor], torch.Tensor]:
"""Prepare input text with conditioning tokens. Return combined conditioning latents"""
# Tokenize text based on the language
text_tokens, text_embeddings = await self.prepare_text_tokens_async(text, language, split_text)
# Load the speaker file and convert it to a tensor
gpt_cond_latent, speaker_embeddings = await self.get_conditioning_latents_async(
speaker_file,
max_ref_length,
gpt_cond_len,
gpt_cond_chunk_len
)
cond_latents = []
for text_embedding in text_embeddings:
# Concatenate along sequence dimension
cond_latents.append((torch.cat([gpt_cond_latent, text_embedding], dim=1).squeeze(0)
.to(self.llm_engine.engine.model_config.dtype)))
return text_tokens, cond_latents, speaker_embeddings
async def get_conditioning_latents_async(
self,
audio_path,
max_ref_length=30,
gpt_cond_len=6,
gpt_cond_chunk_len=6,
librosa_trim_db=None,
sound_norm_refs=False,
load_sr=22050,
):
"""Async version of get_conditioning_latents with concurrency control."""
async with self.semaphore:
# Run the original get_conditioning_latents in executor
result = await asyncio.get_event_loop().run_in_executor(
None,
functools.partial(self.get_conditioning_latents,
audio_path,
max_ref_length,
gpt_cond_len,
gpt_cond_chunk_len,
librosa_trim_db,
sound_norm_refs,
load_sr)
)
return result
async def get_model_logits(self, token_ids: List[int], conditioning: MultiModalDataDict) -> torch.Tensor:
"""Get model logits for a specific request"""
request_id = uuid.uuid4().hex
# Add start and end tokens
token_ids = [self.mel_bos_token_id] + token_ids + [self.mel_eos_token_id] * 5
engine_inputs = TokensPrompt(prompt_token_ids=token_ids)
engine_inputs["multi_modal_data"] = conditioning
# Bind the collector to this request
bound_collector = self.hidden_states_collector.bind_to_request(request_id)
# Set up sampling parameters with the bound collector
sampling_params = ExtendedSamplingParams(
detokenize=False,
max_tokens=1,
hidden_state_collector=bound_collector,
)
# Generate with unique request ID
generator = self.llm_engine.generate(
prompt=engine_inputs,
sampling_params=sampling_params,
request_id=request_id
)
# Consume the generator with a timeout
try:
async def consume_generator():
async for _ in generator:
pass
await asyncio.wait_for(consume_generator(), timeout=300)
except asyncio.TimeoutError:
raise RuntimeError("Timeout while generating logits")
# Get the collected hidden states
hidden_states = self.hidden_states_collector.get_hidden_states(request_id)
if hidden_states is None:
raise RuntimeError(f"No hidden states collected for request {request_id}")
return hidden_states[-len(token_ids):, ...].unsqueeze(0).to(self.device).to(self.dtype)
async def process_tokens_to_speech(
self,
generators: List[AsyncGenerator[RequestOutput, None]],
speaker_embeddings: torch.Tensor,
multimodal_data: List[torch.Tensor],
chunk_size: int = 20,
) -> AsyncGenerator[XTTSOutput, None]:
"""
Process multiple token generators concurrently and emit results sequentially.
Uses a queue-based approach to handle multiple generators reliably.
"""
# Create a queue for each generator to store its results
queues = [asyncio.Queue() for _ in generators]
# Create tasks for processing each generator
tasks = []
for i, generator in enumerate(generators):
task = asyncio.create_task(
self._process_single_generator(
generator,
queues[i],
speaker_embeddings,
multimodal_data[i],
chunk_size
)
)
tasks.append(task)
try:
# Process queues in sequence
for i, queue in enumerate(queues):
while True:
result = await queue.get()
if result is None:
# This generator has finished
break
else:
yield result
finally:
# Ensure all tasks are properly cleaned up
for task in tasks:
if not task.done():
task.cancel()
await asyncio.gather(*tasks, return_exceptions=True)
async def _process_single_generator(
self,
generator: AsyncGenerator[RequestOutput, None],
queue: asyncio.Queue,
speaker_embeddings: torch.Tensor,
gpt_embed_input: torch.Tensor,
chunk_size: int
) -> None:
"""Process a single generator and put results in its queue."""
try:
last_decoded_token = 0
accumulated_tokens = []
async for output in generator:
# Get new tokens
new_tokens = output.outputs[0].token_ids[last_decoded_token:]
accumulated_tokens.extend(new_tokens)
last_decoded_token = len(accumulated_tokens)
# Process tokens when we have enough or it's the final output
if output.finished:# or len(accumulated_tokens) >= chunk_size: se lascio con acculated token mi ripete gli stesis toke, why??
# Process the accumulated tokens
hidden_states = await self.get_model_logits(
accumulated_tokens,
{
"audio": {
'embeds': gpt_embed_input,
"is_logits_only_mode": True
}
}
)
# Generate audio segment
wav = await asyncio.get_event_loop().run_in_executor(
self.executor,
lambda: self.hifigan_decoder.inference(
hidden_states,
g=speaker_embeddings
).cpu().numpy().squeeze()
)
# Put result in queue
await queue.put(XTTSOutput(
request_id=output.request_id,
wav=wav
))
# Reset accumulated tokens
accumulated_tokens = []
if output.finished:
break
except Exception as e:
logging.error(f"Error in generator processing: {e}")
finally:
# Signal completion
await queue.put(None)
async def generate_speech_async_from_streaming_source(self, request: XTTSRequest) -> AsyncGenerator[XTTSOutput, None]:
"""Generate speech for streaming source of text, making a streaming source of audio tokens and then decoding
and returning a streaming audio response."""
assert isinstance(request.text, AsyncGenerator), "Text must be an AsyncGenerator for streaming source."
# Prepare input with conditioning
gpt_cond_latent, speaker_embeddings = await self.get_conditioning_latents_async(
request.speaker_file,
request.max_ref_length,
request.gpt_cond_len,
request.gpt_cond_chunk_len
)
sampling_params = SamplingParams(
temperature=request.temperature,
top_p=request.top_p,
detokenize=False,
top_k=request.top_k,
logits_processors=[LogitsRepetitionPenalizer(request.repetition_penalty)],
repetition_penalty=1.0, # Since we're handling repetition penalty manually
max_tokens=self.gpt_config.gpt_max_audio_tokens,
ignore_eos=True, # Ignore the tokenizer eos token since it is for textual generation
stop_token_ids=[self.mel_eos_token_id],
)
accumulated_text = ""
async for text in request.text:
text = text.strip()
accumulated_text += text
if len(accumulated_text) > request.generate_every_n_chars:
tokens, embeddings = await self.prepare_text_tokens_async(accumulated_text, request.language)
gpt_embed_input = [torch.cat([gpt_cond_latent, embeddings[0]], dim=0)]
engine_inputs = TokensPrompt(prompt_token_ids=tokens)
if gpt_embed_input is not None:
engine_inputs["multi_modal_data"] = {"audio": {"embeds": gpt_embed_input, "is_logits_only_mode": False}}
token_generator = [self.llm_engine.generate(
prompt=engine_inputs,
sampling_params=sampling_params,
request_id=request.request_id,
)]
# Process tokens to speech
async for output in self.process_tokens_to_speech(
token_generator,
speaker_embeddings,
gpt_embed_input,
chunk_size=50
):
yield output
accumulated_text = ""
async def generate_speech_from_text_async(self, request: XTTSRequest) -> AsyncGenerator[XTTSOutput, None]:
"""Generate speech for a single request asynchronously."""
# Prepare input with conditioning
tokens_list, gpt_embed_inputs, speaker_embeddings = await self.prepare_inputs_async(
request.text,
request.language,
request.speaker_file,
request.max_ref_length,
request.gpt_cond_len,
request.gpt_cond_chunk_len,
split_text=True # Split text to avoid OOM on big texts
)
# Start all requests in parallel
generators = []
for seq_index, sequence in enumerate(tokens_list):
sampling_params = SamplingParams(
temperature=request.temperature,
top_p=request.top_p,
detokenize=False,
top_k=request.top_k,
logits_processors=[LogitsRepetitionPenalizer(request.repetition_penalty)],
repetition_penalty=1.0, # Since we're handling repetition penalty manually
max_tokens=self.gpt_config.gpt_max_audio_tokens,
ignore_eos=True, # Ignore the tokenizer eos token since it is for textual generation
stop_token_ids=[self.mel_eos_token_id],
)
engine_inputs = TokensPrompt(prompt_token_ids=sequence)
if gpt_embed_inputs is not None:
engine_inputs["multi_modal_data"] = {"audio": {"embeds": gpt_embed_inputs[seq_index], "is_logits_only_mode": False}}
# Get audio token generator from VLLM
token_generator = self.llm_engine.generate(
prompt=engine_inputs,
sampling_params=sampling_params,
request_id=f"{request.request_id}_{seq_index}",
)
generators.append(token_generator)
# Process tokens to speech
async for output in self.process_tokens_to_speech(
generators,
speaker_embeddings,
gpt_embed_inputs,
chunk_size=50
):
yield output
def generate_speech_from_text(self, request: XTTSRequest) -> List[XTTSOutput]:
"""
Synchronous wrapper for generate_speech_from_text_async.
Args:
request: XTTSRequest object containing generation parameters
Returns:
List of XTTSOutput containing the generated speech segments
"""
async def _collect_outputs():
outputs = []
async for output in self.generate_speech_from_text_async(request):
outputs.append(output)
return outputs
# Run the async code in an event loop
import asyncio
# Get or create an event loop
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
if loop.is_running():
# Create a new loop if the current one is running
new_loop = asyncio.new_event_loop()
results = new_loop.run_until_complete(_collect_outputs())
new_loop.close()
else:
results = loop.run_until_complete(_collect_outputs())
return results