nilsh commited on
Commit
ae8cb59
1 Parent(s): b65e940

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -0
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # Model description
5
+ LegalBert is a BERT-base-cased model fine-tuned on a subset of the `case.law` corpus. Further details can be found in this paper:
6
+
7
+ [A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering](http://ceur-ws.org/Vol-2645/paper5.pdf)
8
+ Nils Holzenberger, Andrew Blair-Stanek and Benjamin Van Durme
9
+ *Proceedings of the 2020 Natural Legal Language Processing (NLLP) Workshop, 24 August 2020*
10
+
11
+ # Usage
12
+ ```
13
+ from transformers import AutoModel, AutoTokenizer
14
+ model = AutoModel.from_pretrained("jhu-clsp/LegalBert")
15
+ tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/LegalBert")
16
+ ```
17
+
18
+ # Citation
19
+ ```
20
+ @inproceedings{holzenberger20dataset,
21
+ author = {Nils Holzenberger and
22
+ Andrew Blair{-}Stanek and
23
+ Benjamin Van Durme},
24
+ title = {A Dataset for Statutory Reasoning in Tax Law Entailment and Question
25
+ Answering},
26
+ booktitle = {Proceedings of the Natural Legal Language Processing Workshop 2020
27
+ co-located with the 26th {ACM} {SIGKDD} International Conference on
28
+ Knowledge Discovery {\&} Data Mining {(KDD} 2020), Virtual Workshop,
29
+ August 24, 2020},
30
+ series = {{CEUR} Workshop Proceedings},
31
+ volume = {2645},
32
+ pages = {31--38},
33
+ publisher = {CEUR-WS.org},
34
+ year = {2020},
35
+ url = {http://ceur-ws.org/Vol-2645/paper5.pdf},
36
+ }
37
+ ```