jhonparra18
commited on
Commit
·
c6bf895
1
Parent(s):
72e870c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: bert-base-cased-cv-studio_name-medium
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bert-base-cased-cv-studio_name-medium
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.3310
|
20 |
+
- Accuracy: 0.6388
|
21 |
+
- F1 Micro: 0.6388
|
22 |
+
- F1 Macro: 0.5001
|
23 |
+
- Precision Micro: 0.6388
|
24 |
+
- Recall Micro: 0.6388
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 20
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:|
|
56 |
+
| 1.4139 | 0.98 | 1000 | 1.3831 | 0.6039 | 0.6039 | 0.4188 | 0.6039 | 0.6039 |
|
57 |
+
| 1.1561 | 1.96 | 2000 | 1.2386 | 0.6554 | 0.6554 | 0.4743 | 0.6554 | 0.6554 |
|
58 |
+
| 0.9183 | 2.93 | 3000 | 1.2201 | 0.6576 | 0.6576 | 0.5011 | 0.6576 | 0.6576 |
|
59 |
+
| 0.677 | 3.91 | 4000 | 1.3478 | 0.6442 | 0.6442 | 0.5206 | 0.6442 | 0.6442 |
|
60 |
+
| 0.4857 | 4.89 | 5000 | 1.4765 | 0.6393 | 0.6393 | 0.5215 | 0.6393 | 0.6393 |
|
61 |
+
| 0.3318 | 5.87 | 6000 | 1.6924 | 0.6442 | 0.6442 | 0.5024 | 0.6442 | 0.6442 |
|
62 |
+
| 0.2273 | 6.84 | 7000 | 1.8645 | 0.6444 | 0.6444 | 0.5060 | 0.6444 | 0.6444 |
|
63 |
+
| 0.1396 | 7.82 | 8000 | 2.1143 | 0.6381 | 0.6381 | 0.5181 | 0.6381 | 0.6381 |
|
64 |
+
| 0.0841 | 8.8 | 9000 | 2.2699 | 0.6359 | 0.6359 | 0.5065 | 0.6359 | 0.6359 |
|
65 |
+
| 0.0598 | 9.78 | 10000 | 2.3310 | 0.6388 | 0.6388 | 0.5001 | 0.6388 | 0.6388 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.19.0
|
71 |
+
- Pytorch 1.8.2+cu111
|
72 |
+
- Datasets 1.6.2
|
73 |
+
- Tokenizers 0.12.1
|