jhonparra18 commited on
Commit
c6bf895
·
1 Parent(s): 72e870c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: bert-base-cased-cv-studio_name-medium
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # bert-base-cased-cv-studio_name-medium
16
+
17
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3310
20
+ - Accuracy: 0.6388
21
+ - F1 Micro: 0.6388
22
+ - F1 Macro: 0.5001
23
+ - Precision Micro: 0.6388
24
+ - Recall Micro: 0.6388
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 20
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:|
56
+ | 1.4139 | 0.98 | 1000 | 1.3831 | 0.6039 | 0.6039 | 0.4188 | 0.6039 | 0.6039 |
57
+ | 1.1561 | 1.96 | 2000 | 1.2386 | 0.6554 | 0.6554 | 0.4743 | 0.6554 | 0.6554 |
58
+ | 0.9183 | 2.93 | 3000 | 1.2201 | 0.6576 | 0.6576 | 0.5011 | 0.6576 | 0.6576 |
59
+ | 0.677 | 3.91 | 4000 | 1.3478 | 0.6442 | 0.6442 | 0.5206 | 0.6442 | 0.6442 |
60
+ | 0.4857 | 4.89 | 5000 | 1.4765 | 0.6393 | 0.6393 | 0.5215 | 0.6393 | 0.6393 |
61
+ | 0.3318 | 5.87 | 6000 | 1.6924 | 0.6442 | 0.6442 | 0.5024 | 0.6442 | 0.6442 |
62
+ | 0.2273 | 6.84 | 7000 | 1.8645 | 0.6444 | 0.6444 | 0.5060 | 0.6444 | 0.6444 |
63
+ | 0.1396 | 7.82 | 8000 | 2.1143 | 0.6381 | 0.6381 | 0.5181 | 0.6381 | 0.6381 |
64
+ | 0.0841 | 8.8 | 9000 | 2.2699 | 0.6359 | 0.6359 | 0.5065 | 0.6359 | 0.6359 |
65
+ | 0.0598 | 9.78 | 10000 | 2.3310 | 0.6388 | 0.6388 | 0.5001 | 0.6388 | 0.6388 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.19.0
71
+ - Pytorch 1.8.2+cu111
72
+ - Datasets 1.6.2
73
+ - Tokenizers 0.12.1