Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ language:
|
|
8 |
|
9 |
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
|
11 |
-
The [SwissBERT](https://huggingface.co/ZurichNLP/swissbert) model was finetuned via self-supervised [SimCSE](http://dx.doi.org/10.18653/v1/2021.emnlp-main.552) (Gao et al., EMNLP 2021) for sentence embeddings, using ~1 million Swiss news articles
|
12 |
2019), the average of the last hidden states (pooler_type=avg) is used as sentence representation.
|
13 |
|
14 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564ab8d113e2baa55830af0/zUUu7WLJdkM2hrIE5ev8L.png)
|
@@ -163,17 +163,17 @@ Note: For French, Italian and Romansh, the training data remains in German, whil
|
|
163 |
|
164 |
Making use of an unsupervised training approach, Swissbert for Sentence Embeddings achieves comparable results as the best-performing multilingual Sentence-BERT model (distiluse-base-multilingual-cased) in the semantic textual similarity task for German and outperforms it in the French text classification task.
|
165 |
|
166 |
-
| Evaluation task |
|
167 |
-
|
168 |
-
| |accuracy |f1-score
|
169 |
-
| Semantic Similarity DE | 83.80
|
170 |
-
| Semantic Similarity FR | 82.30
|
171 |
-
| Semantic Similarity IT | 83.00
|
172 |
-
| Semantic Similarity RM | 78.80
|
173 |
-
| Text Classification DE |
|
174 |
-
| Text Classification FR |
|
175 |
-
| Text Classification IT |
|
176 |
-
| Text Classification RM |
|
177 |
|
178 |
#### Baseline
|
179 |
|
|
|
8 |
|
9 |
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
|
11 |
+
The [SwissBERT](https://huggingface.co/ZurichNLP/swissbert) model was finetuned via self-supervised [SimCSE](http://dx.doi.org/10.18653/v1/2021.emnlp-main.552) (Gao et al., EMNLP 2021) for sentence embeddings, using ~1.5 million Swiss news articles from up to 2022 retireved via [Swissdox@LiRI](https://t.uzh.ch/1hI). Following the [Sentence Transformers](https://huggingface.co/sentence-transformers) approach (Reimers and Gurevych,
|
12 |
2019), the average of the last hidden states (pooler_type=avg) is used as sentence representation.
|
13 |
|
14 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6564ab8d113e2baa55830af0/zUUu7WLJdkM2hrIE5ev8L.png)
|
|
|
163 |
|
164 |
Making use of an unsupervised training approach, Swissbert for Sentence Embeddings achieves comparable results as the best-performing multilingual Sentence-BERT model (distiluse-base-multilingual-cased) in the semantic textual similarity task for German and outperforms it in the French text classification task.
|
165 |
|
166 |
+
| Evaluation task |Swissbert | |Sentence Swissbert| |Sentence-BERT| |
|
167 |
+
|------------------------|----------|-----------|------------------|-----------|-------------|-----------|
|
168 |
+
| |accuracy |f1-score |accuracy |f1-score |accuracy |f1-score |
|
169 |
+
| Semantic Similarity DE | 83.80 % | - |**93.70 %** | - | 87.70 % | - |
|
170 |
+
| Semantic Similarity FR | 82.30 % | - |**92.90 %** | - | 91.10 % | - |
|
171 |
+
| Semantic Similarity IT | 83.00 % | - |**91.20 %** | - | 89.80 % | - |
|
172 |
+
| Semantic Similarity RM | 78.80 % | - |**90.80 %** | - | 67.90 % | - |
|
173 |
+
| Text Classification DE | 96.00 % | 96.00 % | 98.00 % |**98.00 %**| 96.37 % | 96.34 % |
|
174 |
+
| Text Classification FR | 99.35 % |**99.35 %**| 99.35 % |**99.35 %**| 99.35 % |**99.35 %**|
|
175 |
+
| Text Classification IT | 98.00 % | 98.00 % | 99.35 % |**99.35 %**| 99.35 % |**99.35 %**|
|
176 |
+
| Text Classification RM | 81.00 % | 79.00 % | 96.00 % |**96.00 %**| 94.41 % | 94.36 % |
|
177 |
|
178 |
#### Baseline
|
179 |
|