Update README.md
Browse files
README.md
CHANGED
@@ -158,6 +158,8 @@ Note: For French and Italian, the training data remains in German, while the tes
|
|
158 |
|
159 |
### Results
|
160 |
|
|
|
|
|
161 |
| Evaluation task |swissbert | |swissbert for SE| |Sentence-BERT| |
|
162 |
|------------------------|----------|---------|----------------|---------|-------------|---------|
|
163 |
| |accuracy |f1-score |accuracy |f1-score |accuracy |f1-score |
|
|
|
158 |
|
159 |
### Results
|
160 |
|
161 |
+
Making use of an unsupervised training approach, Swissbert for Sentence Embeddings achieves comparable results as the best-performing multilingual Sentence-BERT model in the semantic textual similarity task for German and outperforms it in the French text classification task.
|
162 |
+
|
163 |
| Evaluation task |swissbert | |swissbert for SE| |Sentence-BERT| |
|
164 |
|------------------------|----------|---------|----------------|---------|-------------|---------|
|
165 |
| |accuracy |f1-score |accuracy |f1-score |accuracy |f1-score |
|