ppo-LunarLander-v2 / config.json
jgerbscheid's picture
basic PPO model trained in colab, deep-rl course unit
7f32894
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59860a9e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59860a9ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59860a9f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59860ad050>", "_build": "<function ActorCriticPolicy._build at 0x7f59860ad0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f59860ad170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59860ad200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59860ad290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59860ad320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59860ad3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59860ad440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f59861044e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652369716.0341518, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDoKOVrUCYUCUhpRSlIwBbJRN6AOMAXSUR0CIahyaNMoMdX2UKGgGaAloD0MIU84Xey9QXUCUhpRSlGgVTegDaBZHQIhs5Ge+VTt1fZQoaAZoCWgPQwiuDoC4q5tBQJSGlFKUaBVN6ANoFkdAiIfRX4j8k3V9lChoBmgJaA9DCFd72AsFE1VAlIaUUpRoFU3oA2gWR0CIkGTbFjusdX2UKGgGaAloD0MI2SQ/4lewPUCUhpRSlGgVS/hoFkdAiJRmza9K3HV9lChoBmgJaA9DCLIv2XiwJT5AlIaUUpRoFU3oA2gWR0CIoZCVrylOdX2UKGgGaAloD0MIOQ68Wu6WUECUhpRSlGgVTegDaBZHQIiz/Q4S6Dp1fZQoaAZoCWgPQwiztFNzuZVVQJSGlFKUaBVN6ANoFkdAiLd0SAYpD3V9lChoBmgJaA9DCJT6srRTtmFAlIaUUpRoFU3oA2gWR0CIuw3Ns3yadX2UKGgGaAloD0MIF/NzQ1NjXECUhpRSlGgVTegDaBZHQIi8ltZV4ot1fZQoaAZoCWgPQwgdr0D0pAxHQJSGlFKUaBVN6ANoFkdAiL8YgRsdk3V9lChoBmgJaA9DCA2oN6PmYWFAlIaUUpRoFU3oA2gWR0CIzPYQrc0tdX2UKGgGaAloD0MILUKxFbRcZECUhpRSlGgVTegDaBZHQIjiC7Xg9/11fZQoaAZoCWgPQwgq5iDoaNdfQJSGlFKUaBVN6ANoFkdAiOqxzBAOa3V9lChoBmgJaA9DCDs0LEZdX15AlIaUUpRoFU3oA2gWR0CI7OGHHmzTdX2UKGgGaAloD0MIPSr+74hqXECUhpRSlGgVTegDaBZHQIkswEwFkhB1fZQoaAZoCWgPQwg5DOavkLxiQJSGlFKUaBVN6ANoFkdAiT3RZEDyOXV9lChoBmgJaA9DCH3sLlDSwWJAlIaUUpRoFU3oA2gWR0CJSAso2GZedX2UKGgGaAloD0MIUcHhBZG3Y0CUhpRSlGgVTegDaBZHQIljHc8DB/J1fZQoaAZoCWgPQwjzjlN0JC5eQJSGlFKUaBVN6ANoFkdAiWuiFTNt7HV9lChoBmgJaA9DCEOQgxJmoWFAlIaUUpRoFU3oA2gWR0CJb9oV2zOYdX2UKGgGaAloD0MIKbAApgxvYECUhpRSlGgVTegDaBZHQIl8ZFy7wrl1fZQoaAZoCWgPQwhZTkLpC5piQJSGlFKUaBVN6ANoFkdAiY2MTFl05nV9lChoBmgJaA9DCIxkj1Az8l5AlIaUUpRoFU3oA2gWR0CJkMrdWQwLdX2UKGgGaAloD0MIGJY/3xbFXECUhpRSlGgVTegDaBZHQImT4GyHEdh1fZQoaAZoCWgPQwhlxttKr4tNQJSGlFKUaBVN6ANoFkdAiZU/3nIQv3V9lChoBmgJaA9DCIDY0qOpG11AlIaUUpRoFU3oA2gWR0CJl2bVjI7vdX2UKGgGaAloD0MIRs7CnnarZECUhpRSlGgVTegDaBZHQImjEYwZflZ1fZQoaAZoCWgPQwi8Wu7MhIRpQJSGlFKUaBVNSAJoFkdAiaWA44p+dHV9lChoBmgJaA9DCKwdxTnqNkXAlIaUUpRoFU1MAWgWR0CJrFiFTNt7dX2UKGgGaAloD0MI4bchxmvjXkCUhpRSlGgVTegDaBZHQImz7/Mnqml1fZQoaAZoCWgPQwhBguLHmNFOQJSGlFKUaBVN6ANoFkdAibsuwxFiKHV9lChoBmgJaA9DCIy8rIkFtltAlIaUUpRoFU3oA2gWR0CJvQJWNm16dX2UKGgGaAloD0MIgT6RJ0mLX0CUhpRSlGgVTegDaBZHQIn7/dweeWh1fZQoaAZoCWgPQwhCXaRQFu4WwJSGlFKUaBVNaAFoFkdAiguDT8YQ8XV9lChoBmgJaA9DCCVYHM78qilAlIaUUpRoFU3oA2gWR0CKDUdwvQF+dX2UKGgGaAloD0MIpKmezL9MYECUhpRSlGgVTegDaBZHQIo00F4cFQl1fZQoaAZoCWgPQwjqPCr+73gcwJSGlFKUaBVNnQFoFkdAijdETQE6k3V9lChoBmgJaA9DCKCKG7eY2WBAlIaUUpRoFU3oA2gWR0CKPWAR02cbdX2UKGgGaAloD0MIjXqIRneLYkCUhpRSlGgVTegDaBZHQIpBZddE9dN1fZQoaAZoCWgPQwh3hxQDpHFoQJSGlFKUaBVN6ANoFkdAimFOc2BJ7XV9lChoBmgJaA9DCGFtjJ3wgl1AlIaUUpRoFU3oA2gWR0CKZSaXKKYRdX2UKGgGaAloD0MIpnud1JdJW0CUhpRSlGgVTegDaBZHQIpo5yyUs4F1fZQoaAZoCWgPQwgrhqsDICBZQJSGlFKUaBVN6ANoFkdAimphnrY5DXV9lChoBmgJaA9DCCWt+IbCeWBAlIaUUpRoFU3oA2gWR0CKbOs/6frbdX2UKGgGaAloD0MIe/fHe9V6U0CUhpRSlGgVTegDaBZHQIp92Cf6Gg11fZQoaAZoCWgPQwioj8AfftZFQJSGlFKUaBVN6ANoFkdAioa4XO4XoHV9lChoBmgJaA9DCMZrXtXZXWBAlIaUUpRoFU3oA2gWR0CKkIkfLcKxdX2UKGgGaAloD0MISRCugEJFWECUhpRSlGgVTegDaBZHQIqZHn8sMAp1fZQoaAZoCWgPQwh1j2yumpdaQJSGlFKUaBVN6ANoFkdAiqdEtEofCHV9lChoBmgJaA9DCMOcoE0ON1hAlIaUUpRoFU3oA2gWR0CK73i8WbgCdX2UKGgGaAloD0MIy59vC5ZeRUCUhpRSlGgVTegDaBZHQIrxkinpB5Z1fZQoaAZoCWgPQwgjSRCuAH1iQJSGlFKUaBVN6ANoFkdAix2aTfR/mXV9lChoBmgJaA9DCBDmdi/3Ll1AlIaUUpRoFU3oA2gWR0CLIC9dNWU9dX2UKGgGaAloD0MIwqbOo+KvXECUhpRSlGgVTegDaBZHQIsmdu1ndwh1fZQoaAZoCWgPQwj6mXrdIgVfQJSGlFKUaBVN6ANoFkdAiyq6h6By0nV9lChoBmgJaA9DCA7aq4+HomFAlIaUUpRoFU3oA2gWR0CLR/ntfG+9dX2UKGgGaAloD0MIV+wvu6eaYkCUhpRSlGgVTegDaBZHQItLLbSJCSl1fZQoaAZoCWgPQwj+tbxyvZUnwJSGlFKUaBVNEwFoFkdAi0xI7vG6w3V9lChoBmgJaA9DCGeBdocUnFhAlIaUUpRoFU3oA2gWR0CLTk5BC2MLdX2UKGgGaAloD0MI1uWUgJjMVECUhpRSlGgVTegDaBZHQItPoACGN711fZQoaAZoCWgPQwh3g2itaPM+QJSGlFKUaBVN6ANoFkdAi1G0Ouq3mXV9lChoBmgJaA9DCGouNxjqhltAlIaUUpRoFU3oA2gWR0CLYEMb3oLYdX2UKGgGaAloD0MI7zfaccPaXECUhpRSlGgVTegDaBZHQItnvKMefZp1fZQoaAZoCWgPQwiyf54GDOpeQJSGlFKUaBVN6ANoFkdAi3AcJ2MbWHV9lChoBmgJaA9DCDVG66jqmWBAlIaUUpRoFU3oA2gWR0CLd3Eehf0FdX2UKGgGaAloD0MIkdCWc6lDYkCUhpRSlGgVTegDaBZHQIuDBZ0Syt51fZQoaAZoCWgPQwgbDeAtkNFbQJSGlFKUaBVN6ANoFkdAi8f1Iqbz9XV9lChoBmgJaA9DCHeGqS11wlZAlIaUUpRoFU3oA2gWR0CLyaDf3vhIdX2UKGgGaAloD0MIHcwmwLAfW0CUhpRSlGgVTegDaBZHQIvwErd30PJ1fZQoaAZoCWgPQwgkQiPYOLplQJSGlFKUaBVN6ANoFkdAi/XlJYkmhXV9lChoBmgJaA9DCGmM1lHVKEVAlIaUUpRoFU3oA2gWR0CL+b2ki2UjdX2UKGgGaAloD0MIHk/LD1wKYkCUhpRSlGgVTegDaBZHQIwXBCa7Vax1fZQoaAZoCWgPQwiXHeIftgJYQJSGlFKUaBVN6ANoFkdAjBoU29+PR3V9lChoBmgJaA9DCFovhnKiLWJAlIaUUpRoFU3oA2gWR0CMGy64lQdkdX2UKGgGaAloD0MIu5hmutf7ZECUhpRSlGgVTegDaBZHQIwdVSde6Zp1fZQoaAZoCWgPQwj2I0Vk2HphQJSGlFKUaBVN6ANoFkdAjB67QLNOd3V9lChoBmgJaA9DCIS4cvbOd1xAlIaUUpRoFU3oA2gWR0CMINAv+OwQdX2UKGgGaAloD0MIm6+Sj93dSMCUhpRSlGgVTVIBaBZHQIwldY0VJtl1fZQoaAZoCWgPQwgXnpeKjbdXQJSGlFKUaBVN6ANoFkdAjC8CZWq95HV9lChoBmgJaA9DCKtcqPxrUlpAlIaUUpRoFU3oA2gWR0CMNi1ejVQRdX2UKGgGaAloD0MIe0s5X2xOZECUhpRSlGgVTegDaBZHQIw+Pp8neBR1fZQoaAZoCWgPQwi4OgDiLsdiQJSGlFKUaBVN6ANoFkdAjEX0b1h9cHV9lChoBmgJaA9DCNVCyeTUgF5AlIaUUpRoFU3oA2gWR0CMUpCswL3LdX2UKGgGaAloD0MIHozYJ4CxZUCUhpRSlGgVTegDaBZHQIyZMVHnU2F1fZQoaAZoCWgPQwhpAkUs4iVgQJSGlFKUaBVN6ANoFkdAjJs4lhPTHHV9lChoBmgJaA9DCMQFoFG6olxAlIaUUpRoFU3oA2gWR0CMzsRlHz6KdX2UKGgGaAloD0MIDWyVYHExVUCUhpRSlGgVTegDaBZHQIzTZBu4wyt1fZQoaAZoCWgPQwi5G0RrRa1cQJSGlFKUaBVN6ANoFkdAjPYUVrRBvHV9lChoBmgJaA9DCKRskbQbBGRAlIaUUpRoFU3oA2gWR0CM+Z4Oc2BKdX2UKGgGaAloD0MIW+z2WWU1YECUhpRSlGgVTegDaBZHQIz6ynivPkd1fZQoaAZoCWgPQwhq2zAKgipVQJSGlFKUaBVN6ANoFkdAjPz2VmjCYXV9lChoBmgJaA9DCDwRxHk402BAlIaUUpRoFU3oA2gWR0CM/mEsasIWdX2UKGgGaAloD0MIoaAUrdzjYUCUhpRSlGgVTegDaBZHQI0AmDjBEa51fZQoaAZoCWgPQwiwO915YullQJSGlFKUaBVN6ANoFkdAjQWD6N2ki3V9lChoBmgJaA9DCL6FdeNdEWJAlIaUUpRoFU3oA2gWR0CNDzJf6XSjdX2UKGgGaAloD0MIQtE8gMXWY0CUhpRSlGgVTegDaBZHQI0V/jp9qlB1fZQoaAZoCWgPQwiS6GUUyxZiQJSGlFKUaBVN6ANoFkdAjR21vl2eQXV9lChoBmgJaA9DCPcfmQ6d7mNAlIaUUpRoFU3oA2gWR0CNJWAp8WsSdX2UKGgGaAloD0MIKcsQxzoFYUCUhpRSlGgVTegDaBZHQI0ygBxPwd91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}