Duplicate from aj555/a2c-PandaReachDense-v2
Browse filesCo-authored-by: Andrew Johnson <aj555@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +38 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: '-0.78 +/- 0.31'
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
duplicated_from: aj555/a2c-PandaReachDense-v2
|
23 |
+
---
|
24 |
+
|
25 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
26 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
27 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
28 |
+
|
29 |
+
## Usage (with Stable-baselines3)
|
30 |
+
TODO: Add your code
|
31 |
+
|
32 |
+
|
33 |
+
```python
|
34 |
+
from stable_baselines3 import ...
|
35 |
+
from huggingface_sb3 import load_from_hub
|
36 |
+
|
37 |
+
...
|
38 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:544061e27fcdf1a7f7e6c7a0d3d544d1ecedfb46ed98fb91eab95c60a5a8dcf4
|
3 |
+
size 108170
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3f38dcaee0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f3f38dc5f30>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675184289646069857,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2FqL2FuYWNvbmRhMy9lbnZzL0hGX0RSTC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvYWovYW5hY29uZGEzL2VudnMvSEZfRFJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATw3EPvMdtDxCvgs/Tw3EPvMdtDxCvgs/Tw3EPvMdtDxCvgs/Tw3EPvMdtDxCvgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiY0QP60Ce78munu/v5iSPtBILD8xE+6+9xfSv9myOL+DwZw/hWkpP9UKgL9FbHI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrlPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrlPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrlPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrmUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.38291404 0.02198694 0.54587185]\n [0.38291404 0.02198694 0.54587185]\n [0.38291404 0.02198694 0.54587185]\n [0.38291404 0.02198694 0.54587185]]",
|
60 |
+
"desired_goal": "[[ 0.56465966 -0.9805096 -0.98330915]\n [ 0.2863216 0.67298603 -0.46499017]\n [-1.6413563 -0.721479 1.2246555 ]\n [ 0.66176635 -1.0003306 0.94696456]]",
|
61 |
+
"observation": "[[ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]\n [ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]\n [ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]\n [ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm6DCvAN0hr0baIk+KVDIvbskBD5cP3Q+RHngvcRLf7uwlFk+RQZBvB2RDT7HQY89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.02375822 -0.06565096 0.2683724 ]\n [-0.09780914 0.12904637 0.23852295]\n [-0.1096063 -0.00389551 0.21248126]\n [-0.01178128 0.13824888 0.06994968]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId4L917kJAcCUhpRSlIwBbJRLMowBdJRHQJjFIsQNCqp1fZQoaAZoCWgPQwgC9WbUfJX9v5SGlFKUaBVLMmgWR0CYxN8F6iTMdX2UKGgGaAloD0MIhbTGoBNC+7+UhpRSlGgVSzJoFkdAmMSYmPYFq3V9lChoBmgJaA9DCJqV7UPeMvK/lIaUUpRoFUsyaBZHQJjEUi5d4V11fZQoaAZoCWgPQwiSBre1hef9v5SGlFKUaBVLMmgWR0CYxnjpLVWkdX2UKGgGaAloD0MI/d07akwIA8CUhpRSlGgVSzJoFkdAmMY08NhE0HV9lChoBmgJaA9DCMI1d/S/XATAlIaUUpRoFUsyaBZHQJjF7pUxVQ11fZQoaAZoCWgPQwgCu5o8ZTX2v5SGlFKUaBVLMmgWR0CYxaghbGFSdX2UKGgGaAloD0MIDFhyFYtf7r+UhpRSlGgVSzJoFkdAmMfQood+5XV9lChoBmgJaA9DCPThWYKMgOi/lIaUUpRoFUsyaBZHQJjHjMINVip1fZQoaAZoCWgPQwhcWaKzzCLkv5SGlFKUaBVLMmgWR0CYx0Z3s5XEdX2UKGgGaAloD0MI46jcRC1N6r+UhpRSlGgVSzJoFkdAmMcACjk+5nV9lChoBmgJaA9DCFAdq5SeKfm/lIaUUpRoFUsyaBZHQJjJQlruYyB1fZQoaAZoCWgPQwhd/G1PkJj/v5SGlFKUaBVLMmgWR0CYyP5ZbILgdX2UKGgGaAloD0MIVMiVehbE/L+UhpRSlGgVSzJoFkdAmMi3/o7muHV9lChoBmgJaA9DCEa1iCgmL/W/lIaUUpRoFUsyaBZHQJjIcZccENh1fZQoaAZoCWgPQwiKOnMPCd/wv5SGlFKUaBVLMmgWR0CYypVbA1vVdX2UKGgGaAloD0MIsrrVc9J75L+UhpRSlGgVSzJoFkdAmMpRaX8fm3V9lChoBmgJaA9DCIuk3ehjPvK/lIaUUpRoFUsyaBZHQJjKCyv9tMx1fZQoaAZoCWgPQwilaVA0DyD4v5SGlFKUaBVLMmgWR0CYycS9ugpSdX2UKGgGaAloD0MIbLQc6KF29b+UhpRSlGgVSzJoFkdAmMvrOE/SpnV9lChoBmgJaA9DCNmVlpF6j/K/lIaUUpRoFUsyaBZHQJjLpx82Ji11fZQoaAZoCWgPQwgJwD+lSrQAwJSGlFKUaBVLMmgWR0CYy2DR+jM3dX2UKGgGaAloD0MITpfFxOYj9r+UhpRSlGgVSzJoFkdAmMsaZ+hGpnV9lChoBmgJaA9DCC3NrRBWI/y/lIaUUpRoFUsyaBZHQJjNPuJDVpd1fZQoaAZoCWgPQwgMdVjhlo/sv5SGlFKUaBVLMmgWR0CYzPsJpnHvdX2UKGgGaAloD0MI++WTFcNV8r+UhpRSlGgVSzJoFkdAmMy0uL74z3V9lChoBmgJaA9DCCbhQh7Bjf2/lIaUUpRoFUsyaBZHQJjMblRxcVx1fZQoaAZoCWgPQwh6i4f3HNj9v5SGlFKUaBVLMmgWR0CYzpnU2DQJdX2UKGgGaAloD0MIWwpI+x/g9L+UhpRSlGgVSzJoFkdAmM5WgrYoRnV9lChoBmgJaA9DCCHJrN7hlgHAlIaUUpRoFUsyaBZHQJjOERQJokB1fZQoaAZoCWgPQwibc/BMaJL1v5SGlFKUaBVLMmgWR0CYzcvE0iyIdX2UKGgGaAloD0MID7iumBHe97+UhpRSlGgVSzJoFkdAmM//v4M4LnV9lChoBmgJaA9DCNf6IqEtZ/W/lIaUUpRoFUsyaBZHQJjPu9sabWp1fZQoaAZoCWgPQwhXl1MCYpLxv5SGlFKUaBVLMmgWR0CYz3W8RL9NdX2UKGgGaAloD0MIRpc3h2t187+UhpRSlGgVSzJoFkdAmM8vZElVtHV9lChoBmgJaA9DCAMK9fQRuPm/lIaUUpRoFUsyaBZHQJjRX/FR51N1fZQoaAZoCWgPQwiiQQqeQq72v5SGlFKUaBVLMmgWR0CY0Rvv0AcUdX2UKGgGaAloD0MIZ2K6EKu/8r+UhpRSlGgVSzJoFkdAmNDVnAZbZHV9lChoBmgJaA9DCJWCbi9pzPK/lIaUUpRoFUsyaBZHQJjQjzWf9P11fZQoaAZoCWgPQwi9cVKY93j8v5SGlFKUaBVLMmgWR0CY0rWdVea8dX2UKGgGaAloD0MIzmxX6INl3b+UhpRSlGgVSzJoFkdAmNJxradtmHV9lChoBmgJaA9DCJOmQdE8APK/lIaUUpRoFUsyaBZHQJjSK20AtFt1fZQoaAZoCWgPQwhxICQLmMD2v5SGlFKUaBVLMmgWR0CY0eT8HfMwdX2UKGgGaAloD0MIi/uPTIcO+L+UhpRSlGgVSzJoFkdAmNQRoIv8InV9lChoBmgJaA9DCJYKKqp+JfC/lIaUUpRoFUsyaBZHQJjTzbRF7Up1fZQoaAZoCWgPQwh7Szlf7L3ev5SGlFKUaBVLMmgWR0CY04dqcmShdX2UKGgGaAloD0MIUirhCb0+8r+UhpRSlGgVSzJoFkdAmNNA8GLUC3V9lChoBmgJaA9DCCdnKO54k/m/lIaUUpRoFUsyaBZHQJjVYoWpIc11fZQoaAZoCWgPQwgWvymsVFDpv5SGlFKUaBVLMmgWR0CY1R6kIomYdX2UKGgGaAloD0MIVJCfjVz38b+UhpRSlGgVSzJoFkdAmNTYSxqwhXV9lChoBmgJaA9DCLMmFviK7vK/lIaUUpRoFUsyaBZHQJjUkdHUc4p1fZQoaAZoCWgPQwiIRncQO1Psv5SGlFKUaBVLMmgWR0CY1r/n4fwJdX2UKGgGaAloD0MI/TIYIxJFAMCUhpRSlGgVSzJoFkdAmNZ7/jsD4nV9lChoBmgJaA9DCOf9f5ww4fi/lIaUUpRoFUsyaBZHQJjWNa6jFhp1fZQoaAZoCWgPQwhvYkhOJm71v5SGlFKUaBVLMmgWR0CY1e9Htnf3dX2UKGgGaAloD0MIc/bOaKuS7L+UhpRSlGgVSzJoFkdAmNgYWk8A73V9lChoBmgJaA9DCNS19j5VBfG/lIaUUpRoFUsyaBZHQJjX1F/hESd1fZQoaAZoCWgPQwhcyvli78Xkv5SGlFKUaBVLMmgWR0CY144PPLPldX2UKGgGaAloD0MIuhPsv86N8L+UhpRSlGgVSzJoFkdAmNdHnIQvpXV9lChoBmgJaA9DCMdl3NRA8/W/lIaUUpRoFUsyaBZHQJjZcgjhUBJ1fZQoaAZoCWgPQwhUrBqEud3rv5SGlFKUaBVLMmgWR0CY2S4wRGtqdX2UKGgGaAloD0MIRyBe1y8Y8b+UhpRSlGgVSzJoFkdAmNjn09QoC3V9lChoBmgJaA9DCDlhwmhWNvG/lIaUUpRoFUsyaBZHQJjYoXLvCuV1fZQoaAZoCWgPQwiR7ucU5Gfzv5SGlFKUaBVLMmgWR0CY2sgRsdkrdX2UKGgGaAloD0MIDK1OzlBc57+UhpRSlGgVSzJoFkdAmNqEKqn3tnV9lChoBmgJaA9DCJpbIazGkvO/lIaUUpRoFUsyaBZHQJjaPd30PH11fZQoaAZoCWgPQwjJchJKX8j3v5SGlFKUaBVLMmgWR0CY2fdmQKa5dX2UKGgGaAloD0MIZhNgWP785r+UhpRSlGgVSzJoFkdAmNwnQID5kHV9lChoBmgJaA9DCMv49xkXTve/lIaUUpRoFUsyaBZHQJjb4052hZh1fZQoaAZoCWgPQwjIfhZLkbz2v5SGlFKUaBVLMmgWR0CY250MPSUkdX2UKGgGaAloD0MIFRvzOuKQ5r+UhpRSlGgVSzJoFkdAmNtWipNsWXV9lChoBmgJaA9DCOS7lLpkXPq/lIaUUpRoFUsyaBZHQJjdfpmmLtN1fZQoaAZoCWgPQwhkd4GSAovwv5SGlFKUaBVLMmgWR0CY3Tq4H5aedX2UKGgGaAloD0MIB0Dc1atI8r+UhpRSlGgVSzJoFkdAmNz0Q5FPSHV9lChoBmgJaA9DCAd5PZgUn+u/lIaUUpRoFUsyaBZHQJjcregte2N1fZQoaAZoCWgPQwj4qSo0EEvxv5SGlFKUaBVLMmgWR0CY3tNTtLL7dX2UKGgGaAloD0MIj2/vGvSl7b+UhpRSlGgVSzJoFkdAmN6PYODraHV9lChoBmgJaA9DCOzdH+9V6/C/lIaUUpRoFUsyaBZHQJjeSQQtjCp1fZQoaAZoCWgPQwhLyt3n+Ojzv5SGlFKUaBVLMmgWR0CY3gJ7LMcIdX2UKGgGaAloD0MIih74GKw45L+UhpRSlGgVSzJoFkdAmOAv1pTMq3V9lChoBmgJaA9DCDBJZYo5CPK/lIaUUpRoFUsyaBZHQJjf6+rU9ZB1fZQoaAZoCWgPQwi28/3UeOnqv5SGlFKUaBVLMmgWR0CY36WKdhAodX2UKGgGaAloD0MIdOygEtcx5r+UhpRSlGgVSzJoFkdAmN9fMnqmj3V9lChoBmgJaA9DCNr/AGvVrtq/lIaUUpRoFUsyaBZHQJjhiTPjXFt1fZQoaAZoCWgPQwh3gZICC2Dnv5SGlFKUaBVLMmgWR0CY4UVEd/8VdX2UKGgGaAloD0MIfxe2Zisv7r+UhpRSlGgVSzJoFkdAmOD++dsi0XV9lChoBmgJaA9DCCTtRh/zAeC/lIaUUpRoFUsyaBZHQJjguI2wV0t1fZQoaAZoCWgPQwih20sao3Xrv5SGlFKUaBVLMmgWR0CY4tnq3VkMdX2UKGgGaAloD0MIWOcYkL3e5b+UhpRSlGgVSzJoFkdAmOKWAf+0gXV9lChoBmgJaA9DCAr4NZIEYfC/lIaUUpRoFUsyaBZHQJjiT5k9U0h1fZQoaAZoCWgPQwg8LT9wlafwv5SGlFKUaBVLMmgWR0CY4gkhib2EdX2UKGgGaAloD0MIN1X3yOYq6r+UhpRSlGgVSzJoFkdAmOQvqcEvCnV9lChoBmgJaA9DCJyJ6UKs/vS/lIaUUpRoFUsyaBZHQJjj69du5z51fZQoaAZoCWgPQwhKtOTxtHzvv5SGlFKUaBVLMmgWR0CY46VpKzzFdX2UKGgGaAloD0MI2nVvRWKC7L+UhpRSlGgVSzJoFkdAmONe+/QBxXV9lChoBmgJaA9DCEKXcOgtnue/lIaUUpRoFUsyaBZHQJjlg6QvHtF1fZQoaAZoCWgPQwhLI2b2eYzuv5SGlFKUaBVLMmgWR0CY5T+23KB/dX2UKGgGaAloD0MI0XXhB+fT7r+UhpRSlGgVSzJoFkdAmOT5XEIgNnV9lChoBmgJaA9DCJtXdVYLLPC/lIaUUpRoFUsyaBZHQJjkstuk1uR1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2651e79b11866fc8bc5b6c04dc8084cb0f87f0e6ae3d0f8498880dbfc2c11451
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17f110c3adae7f63e6abc8cc2712742a62836216babd77c8db8c1a48821dede8
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3f38dcaee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f38dc5f30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675184289646069857, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2FqL2FuYWNvbmRhMy9lbnZzL0hGX0RSTC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvYWovYW5hY29uZGEzL2VudnMvSEZfRFJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATw3EPvMdtDxCvgs/Tw3EPvMdtDxCvgs/Tw3EPvMdtDxCvgs/Tw3EPvMdtDxCvgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiY0QP60Ce78munu/v5iSPtBILD8xE+6+9xfSv9myOL+DwZw/hWkpP9UKgL9FbHI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrlPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrlPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrlPDcQ+8x20PEK+Cz/EJS47GJYOO+orUrmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38291404 0.02198694 0.54587185]\n [0.38291404 0.02198694 0.54587185]\n [0.38291404 0.02198694 0.54587185]\n [0.38291404 0.02198694 0.54587185]]", "desired_goal": "[[ 0.56465966 -0.9805096 -0.98330915]\n [ 0.2863216 0.67298603 -0.46499017]\n [-1.6413563 -0.721479 1.2246555 ]\n [ 0.66176635 -1.0003306 0.94696456]]", "observation": "[[ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]\n [ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]\n [ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]\n [ 3.8291404e-01 2.1986937e-02 5.4587185e-01 2.6572803e-03\n 2.1756943e-03 -2.0043520e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm6DCvAN0hr0baIk+KVDIvbskBD5cP3Q+RHngvcRLf7uwlFk+RQZBvB2RDT7HQY89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02375822 -0.06565096 0.2683724 ]\n [-0.09780914 0.12904637 0.23852295]\n [-0.1096063 -0.00389551 0.21248126]\n [-0.01178128 0.13824888 0.06994968]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId4L917kJAcCUhpRSlIwBbJRLMowBdJRHQJjFIsQNCqp1fZQoaAZoCWgPQwgC9WbUfJX9v5SGlFKUaBVLMmgWR0CYxN8F6iTMdX2UKGgGaAloD0MIhbTGoBNC+7+UhpRSlGgVSzJoFkdAmMSYmPYFq3V9lChoBmgJaA9DCJqV7UPeMvK/lIaUUpRoFUsyaBZHQJjEUi5d4V11fZQoaAZoCWgPQwiSBre1hef9v5SGlFKUaBVLMmgWR0CYxnjpLVWkdX2UKGgGaAloD0MI/d07akwIA8CUhpRSlGgVSzJoFkdAmMY08NhE0HV9lChoBmgJaA9DCMI1d/S/XATAlIaUUpRoFUsyaBZHQJjF7pUxVQ11fZQoaAZoCWgPQwgCu5o8ZTX2v5SGlFKUaBVLMmgWR0CYxaghbGFSdX2UKGgGaAloD0MIDFhyFYtf7r+UhpRSlGgVSzJoFkdAmMfQood+5XV9lChoBmgJaA9DCPThWYKMgOi/lIaUUpRoFUsyaBZHQJjHjMINVip1fZQoaAZoCWgPQwhcWaKzzCLkv5SGlFKUaBVLMmgWR0CYx0Z3s5XEdX2UKGgGaAloD0MI46jcRC1N6r+UhpRSlGgVSzJoFkdAmMcACjk+5nV9lChoBmgJaA9DCFAdq5SeKfm/lIaUUpRoFUsyaBZHQJjJQlruYyB1fZQoaAZoCWgPQwhd/G1PkJj/v5SGlFKUaBVLMmgWR0CYyP5ZbILgdX2UKGgGaAloD0MIVMiVehbE/L+UhpRSlGgVSzJoFkdAmMi3/o7muHV9lChoBmgJaA9DCEa1iCgmL/W/lIaUUpRoFUsyaBZHQJjIcZccENh1fZQoaAZoCWgPQwiKOnMPCd/wv5SGlFKUaBVLMmgWR0CYypVbA1vVdX2UKGgGaAloD0MIsrrVc9J75L+UhpRSlGgVSzJoFkdAmMpRaX8fm3V9lChoBmgJaA9DCIuk3ehjPvK/lIaUUpRoFUsyaBZHQJjKCyv9tMx1fZQoaAZoCWgPQwilaVA0DyD4v5SGlFKUaBVLMmgWR0CYycS9ugpSdX2UKGgGaAloD0MIbLQc6KF29b+UhpRSlGgVSzJoFkdAmMvrOE/SpnV9lChoBmgJaA9DCNmVlpF6j/K/lIaUUpRoFUsyaBZHQJjLpx82Ji11fZQoaAZoCWgPQwgJwD+lSrQAwJSGlFKUaBVLMmgWR0CYy2DR+jM3dX2UKGgGaAloD0MITpfFxOYj9r+UhpRSlGgVSzJoFkdAmMsaZ+hGpnV9lChoBmgJaA9DCC3NrRBWI/y/lIaUUpRoFUsyaBZHQJjNPuJDVpd1fZQoaAZoCWgPQwgMdVjhlo/sv5SGlFKUaBVLMmgWR0CYzPsJpnHvdX2UKGgGaAloD0MI++WTFcNV8r+UhpRSlGgVSzJoFkdAmMy0uL74z3V9lChoBmgJaA9DCCbhQh7Bjf2/lIaUUpRoFUsyaBZHQJjMblRxcVx1fZQoaAZoCWgPQwh6i4f3HNj9v5SGlFKUaBVLMmgWR0CYzpnU2DQJdX2UKGgGaAloD0MIWwpI+x/g9L+UhpRSlGgVSzJoFkdAmM5WgrYoRnV9lChoBmgJaA9DCCHJrN7hlgHAlIaUUpRoFUsyaBZHQJjOERQJokB1fZQoaAZoCWgPQwibc/BMaJL1v5SGlFKUaBVLMmgWR0CYzcvE0iyIdX2UKGgGaAloD0MID7iumBHe97+UhpRSlGgVSzJoFkdAmM//v4M4LnV9lChoBmgJaA9DCNf6IqEtZ/W/lIaUUpRoFUsyaBZHQJjPu9sabWp1fZQoaAZoCWgPQwhXl1MCYpLxv5SGlFKUaBVLMmgWR0CYz3W8RL9NdX2UKGgGaAloD0MIRpc3h2t187+UhpRSlGgVSzJoFkdAmM8vZElVtHV9lChoBmgJaA9DCAMK9fQRuPm/lIaUUpRoFUsyaBZHQJjRX/FR51N1fZQoaAZoCWgPQwiiQQqeQq72v5SGlFKUaBVLMmgWR0CY0Rvv0AcUdX2UKGgGaAloD0MIZ2K6EKu/8r+UhpRSlGgVSzJoFkdAmNDVnAZbZHV9lChoBmgJaA9DCJWCbi9pzPK/lIaUUpRoFUsyaBZHQJjQjzWf9P11fZQoaAZoCWgPQwi9cVKY93j8v5SGlFKUaBVLMmgWR0CY0rWdVea8dX2UKGgGaAloD0MIzmxX6INl3b+UhpRSlGgVSzJoFkdAmNJxradtmHV9lChoBmgJaA9DCJOmQdE8APK/lIaUUpRoFUsyaBZHQJjSK20AtFt1fZQoaAZoCWgPQwhxICQLmMD2v5SGlFKUaBVLMmgWR0CY0eT8HfMwdX2UKGgGaAloD0MIi/uPTIcO+L+UhpRSlGgVSzJoFkdAmNQRoIv8InV9lChoBmgJaA9DCJYKKqp+JfC/lIaUUpRoFUsyaBZHQJjTzbRF7Up1fZQoaAZoCWgPQwh7Szlf7L3ev5SGlFKUaBVLMmgWR0CY04dqcmShdX2UKGgGaAloD0MIUirhCb0+8r+UhpRSlGgVSzJoFkdAmNNA8GLUC3V9lChoBmgJaA9DCCdnKO54k/m/lIaUUpRoFUsyaBZHQJjVYoWpIc11fZQoaAZoCWgPQwgWvymsVFDpv5SGlFKUaBVLMmgWR0CY1R6kIomYdX2UKGgGaAloD0MIVJCfjVz38b+UhpRSlGgVSzJoFkdAmNTYSxqwhXV9lChoBmgJaA9DCLMmFviK7vK/lIaUUpRoFUsyaBZHQJjUkdHUc4p1fZQoaAZoCWgPQwiIRncQO1Psv5SGlFKUaBVLMmgWR0CY1r/n4fwJdX2UKGgGaAloD0MI/TIYIxJFAMCUhpRSlGgVSzJoFkdAmNZ7/jsD4nV9lChoBmgJaA9DCOf9f5ww4fi/lIaUUpRoFUsyaBZHQJjWNa6jFhp1fZQoaAZoCWgPQwhvYkhOJm71v5SGlFKUaBVLMmgWR0CY1e9Htnf3dX2UKGgGaAloD0MIc/bOaKuS7L+UhpRSlGgVSzJoFkdAmNgYWk8A73V9lChoBmgJaA9DCNS19j5VBfG/lIaUUpRoFUsyaBZHQJjX1F/hESd1fZQoaAZoCWgPQwhcyvli78Xkv5SGlFKUaBVLMmgWR0CY144PPLPldX2UKGgGaAloD0MIuhPsv86N8L+UhpRSlGgVSzJoFkdAmNdHnIQvpXV9lChoBmgJaA9DCMdl3NRA8/W/lIaUUpRoFUsyaBZHQJjZcgjhUBJ1fZQoaAZoCWgPQwhUrBqEud3rv5SGlFKUaBVLMmgWR0CY2S4wRGtqdX2UKGgGaAloD0MIRyBe1y8Y8b+UhpRSlGgVSzJoFkdAmNjn09QoC3V9lChoBmgJaA9DCDlhwmhWNvG/lIaUUpRoFUsyaBZHQJjYoXLvCuV1fZQoaAZoCWgPQwiR7ucU5Gfzv5SGlFKUaBVLMmgWR0CY2sgRsdkrdX2UKGgGaAloD0MIDK1OzlBc57+UhpRSlGgVSzJoFkdAmNqEKqn3tnV9lChoBmgJaA9DCJpbIazGkvO/lIaUUpRoFUsyaBZHQJjaPd30PH11fZQoaAZoCWgPQwjJchJKX8j3v5SGlFKUaBVLMmgWR0CY2fdmQKa5dX2UKGgGaAloD0MIZhNgWP785r+UhpRSlGgVSzJoFkdAmNwnQID5kHV9lChoBmgJaA9DCMv49xkXTve/lIaUUpRoFUsyaBZHQJjb4052hZh1fZQoaAZoCWgPQwjIfhZLkbz2v5SGlFKUaBVLMmgWR0CY250MPSUkdX2UKGgGaAloD0MIFRvzOuKQ5r+UhpRSlGgVSzJoFkdAmNtWipNsWXV9lChoBmgJaA9DCOS7lLpkXPq/lIaUUpRoFUsyaBZHQJjdfpmmLtN1fZQoaAZoCWgPQwhkd4GSAovwv5SGlFKUaBVLMmgWR0CY3Tq4H5aedX2UKGgGaAloD0MIB0Dc1atI8r+UhpRSlGgVSzJoFkdAmNz0Q5FPSHV9lChoBmgJaA9DCAd5PZgUn+u/lIaUUpRoFUsyaBZHQJjcregte2N1fZQoaAZoCWgPQwj4qSo0EEvxv5SGlFKUaBVLMmgWR0CY3tNTtLL7dX2UKGgGaAloD0MIj2/vGvSl7b+UhpRSlGgVSzJoFkdAmN6PYODraHV9lChoBmgJaA9DCOzdH+9V6/C/lIaUUpRoFUsyaBZHQJjeSQQtjCp1fZQoaAZoCWgPQwhLyt3n+Ojzv5SGlFKUaBVLMmgWR0CY3gJ7LMcIdX2UKGgGaAloD0MIih74GKw45L+UhpRSlGgVSzJoFkdAmOAv1pTMq3V9lChoBmgJaA9DCDBJZYo5CPK/lIaUUpRoFUsyaBZHQJjf6+rU9ZB1fZQoaAZoCWgPQwi28/3UeOnqv5SGlFKUaBVLMmgWR0CY36WKdhAodX2UKGgGaAloD0MIdOygEtcx5r+UhpRSlGgVSzJoFkdAmN9fMnqmj3V9lChoBmgJaA9DCNr/AGvVrtq/lIaUUpRoFUsyaBZHQJjhiTPjXFt1fZQoaAZoCWgPQwh3gZICC2Dnv5SGlFKUaBVLMmgWR0CY4UVEd/8VdX2UKGgGaAloD0MIfxe2Zisv7r+UhpRSlGgVSzJoFkdAmOD++dsi0XV9lChoBmgJaA9DCCTtRh/zAeC/lIaUUpRoFUsyaBZHQJjguI2wV0t1fZQoaAZoCWgPQwih20sao3Xrv5SGlFKUaBVLMmgWR0CY4tnq3VkMdX2UKGgGaAloD0MIWOcYkL3e5b+UhpRSlGgVSzJoFkdAmOKWAf+0gXV9lChoBmgJaA9DCAr4NZIEYfC/lIaUUpRoFUsyaBZHQJjiT5k9U0h1fZQoaAZoCWgPQwg8LT9wlafwv5SGlFKUaBVLMmgWR0CY4gkhib2EdX2UKGgGaAloD0MIN1X3yOYq6r+UhpRSlGgVSzJoFkdAmOQvqcEvCnV9lChoBmgJaA9DCJyJ6UKs/vS/lIaUUpRoFUsyaBZHQJjj69du5z51fZQoaAZoCWgPQwhKtOTxtHzvv5SGlFKUaBVLMmgWR0CY46VpKzzFdX2UKGgGaAloD0MI2nVvRWKC7L+UhpRSlGgVSzJoFkdAmONe+/QBxXV9lChoBmgJaA9DCEKXcOgtnue/lIaUUpRoFUsyaBZHQJjlg6QvHtF1fZQoaAZoCWgPQwhLI2b2eYzuv5SGlFKUaBVLMmgWR0CY5T+23KB/dX2UKGgGaAloD0MI0XXhB+fT7r+UhpRSlGgVSzJoFkdAmOT5XEIgNnV9lChoBmgJaA9DCJtXdVYLLPC/lIaUUpRoFUsyaBZHQJjkstuk1uR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (335 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.7804141158703715, "std_reward": 0.30845685466311107, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-31T12:24:45.339691"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c437e1ef7968c2d0e45c7f89f028e5338831087c000efcd47117203219c3f9ed
|
3 |
+
size 3056
|