jfelgate commited on
Commit
902ea04
1 Parent(s): 6350965

Upload PPO LunarLander-v2 trained agent with basic params

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -122.83 +/- 56.60
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
 
28
 
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 1000000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 16
43
- 'num_steps': 1024
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.999
47
- 'gae_lambda': 0.98
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'jfelgate/ppo-LunarLander-v2'
58
- 'batch_size': 16384
59
- 'minibatch_size': 4096}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 249.33 +/- 45.08
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
 
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7daac08abb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7daac08abbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7daac08abc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7daac08abd00>", "_build": "<function ActorCriticPolicy._build at 0x7daac08abd90>", "forward": "<function ActorCriticPolicy.forward at 0x7daac08abe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7daac08abeb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7daac08abf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7daac0894040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7daac08940d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7daac0894160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7daac08941f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7daaca6a0e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698285933211794203, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAACayob0NUxI+uvNQPRJ9rr6LZNw9zSGEvQAAAAAAAAAA2iWzvVwzKroXeqC7B+J2OJvXqbsKOz46AAAAAAAAgD9t2So+NmoCvIBnZr6HcMK8wBmjPvYK2r0AAIA/AACAP3P2gz1Ia6a68kFuPCxngrxpfZA6M/pjvQAAAAAAAIA/INRJvi5dpry6Rie+Ut6QvKFQET64mWI9AACAPwAAgD/az+O9n1VJP8nrJj671dK+F4RGvl1nbT4AAAAAAAAAADNvWryFc925g42BPP7agjUlama77ZVxNAAAgD8AAIA/88vgvRSehLpkuCa7SxYwtsAKCTs4iz46AACAPwAAgD/69Lg+8Y82Pw4Bir1nOea+lMxjPsBy6L0AAAAAAAAAADOnvbwKt1a5utPzuzk4nDbNzAQ75KMPtgAAgD8AAIA/jY6LPYN5Yrx6Ls69wJG0PJSUxj2VYpG9AAAAAAAAgD8zFtA8XKseuo6u5jqTffc1IqAuOim3A7oAAIA/AACAPwDQwjr2xAK6EmVYOy4ChbYkcT+5CMN9ugAAgD8AAIA/mnAFvYXz87ndM+O7fEqPOJ9XsjqC8jU5AACAPwAAgD8A1Xy9rjSmvK5J0jx5KkE9zskDPtjn9rwAAIA/AACAPzNznj20xQ0+5TUyvmYjer59I7u9ZpuhPQAAAAAAAAAAzdlpPfZIPLqVE0E68U1RNS0OpDvwPWK5AACAPwAAgD+aC3E9w/ErugpnmztmP2a5Bi5luuGrQboAAIA/AACAP01Q3D0fTb+5McglPO6mAz3114G64/riOwAAAAAAAIA/zbq7vOE4iLoN0Sq88dzHtY1ZQLkSLzo1AACAPwAAgD+z03q9w+VbuvOhtTpdH3+2Ui9yOwg+0rkAAIA/AACAPwCguDztlOs+bkZNvSZskr5Y3U292BcPPQAAAAAAAAAAkzhGvjYBWbzk4BY2awynsAAvxT2XhyC1AACAPwAAgD8zJS29Ro6hP4USG75Lwd6+oxAvvToRHD0AAAAAAAAAAGZ+s7wpGDW6mgavusNiObbm0DO6+QXLOQAAgD8AAIA/2oufvU3Kiz/dnBq+FWDUvk1u0L0KivK8AAAAAAAAAACaeT+8KWwjurf0lTlk1Y61e8X6uo7vrbgAAIA/AACAP80dlD3DNT+6ej2ZurBX9DcXHwe7qgchOQAAgD8AAIA/SBGUvs782j5gfKQ+toSuvpTVpL3rdmk9AAAAAAAAAACaaXc79qRkut1QK7wZCtu12JmVuZqpSzUAAIA/AACAP5qXC732UB+6NvxTvM72ZLzbl/06VURIvQAAAAAAAIA/Grm5PVyTSLqQC9O4vr2etSjOsjrty+83AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFz6epXIU8GMAWyUTegDjAF0lEdAns9aFuejEnV9lChoBkdAZ7ZMbm2b5WgHTegDaAhHQJ7SDS+g13t1fZQoaAZHQDx6RSxZ+x5oB0vJaAhHQJ7UUJWvKU51fZQoaAZHQGYwrsjVx0doB03oA2gIR0Ce3ZqEeyRkdX2UKGgGR0BiEfz+WGATaAdN6ANoCEdAnugq3d9DyHV9lChoBkdAY2P91EE1VGgHTegDaAhHQJ7sxETg2qF1fZQoaAZHQGS1In0Cih5oB03oA2gIR0Ce8Gvq1PWQdX2UKGgGR0BjHrEaVD8caAdN6ANoCEdAnvOuw5eZ5XV9lChoBkdAYXlYFJQLu2gHTegDaAhHQJ72e/Dcdo51fZQoaAZHQGPUufmLcbloB03oA2gIR0Ce+rM23rledX2UKGgGR0BnCNNnGsFMaAdN6ANoCEdAnv2xOtW+5HV9lChoBkdAZxdB2OhkAmgHTegDaAhHQJ7+eDwpe/p1fZQoaAZHQGMvBqTKT0RoB03oA2gIR0Ce/wiqABkqdX2UKGgGR0Be/SmhufmLaAdN6ANoCEdAnwfaDf3vhXV9lChoBkdAY93MyrPt2WgHTegDaAhHQJ+vxOymhuh1fZQoaAZHQGVK+UQkHD9oB03oA2gIR0CfsJj8k2P1dX2UKGgGR0BNP5eJHiFTaAdL1mgIR0Cftpl/H5rQdX2UKGgGR0BflBP420iRaAdN6ANoCEdAn7duanaWX3V9lChoBkdAZQ/T1CgK4WgHTegDaAhHQJ+7IuEmICV1fZQoaAZHQGEitgrpaA5oB03oA2gIR0CfvDcPe54GdX2UKGgGR0BiE4jKPn0TaAdN6ANoCEdAn8MbM9r433V9lChoBkdAY7i3vQWvbGgHTegDaAhHQJ/I34rSVnp1fZQoaAZHQGDUiaJAMUhoB03oA2gIR0CfyjXIU8FIdX2UKGgGR0BjO2TPjXFtaAdN6ANoCEdAn8t0b961LXV9lChoBkdAZMh14gRsdmgHTegDaAhHQJ/PT1OCXhR1fZQoaAZHQGEtuhCdBjZoB03oA2gIR0Cf1cZ2IO6NdX2UKGgGR0BkNUEovzvraAdN6ANoCEdAn+DSjk+5fHV9lChoBkdAW4+pFTefqWgHTegDaAhHQJ/lsYFaB7N1fZQoaAZHQEiKPMjeKsNoB0u/aAhHQJ/qYafjCHh1fZQoaAZHQGQKJiiItUZoB03oA2gIR0Cf6xoePq9odX2UKGgGR0Bge9kxyn1naAdN6ANoCEdAn+9ZfYzzmXV9lChoBkdAY/C3x4IKMWgHTegDaAhHQJ/03zoUzsR1fZQoaAZHQFIkT6i0v5BoB0vNaAhHQJ/2IDTz/ZN1fZQoaAZHQELkvQF9roJoB0uvaAhHQJ/9sQAdXDF1fZQoaAZHQGJoDABT4tZoB03oA2gIR0Cf/nbiqABldX2UKGgGR0Blnejh1klNaAdN6ANoCEdAoADo20iQk3V9lChoBkdAY5aALiMo+mgHTegDaAhHQKAB9oA4n4R1fZQoaAZHQGbN7VJ+UhVoB03oA2gIR0CgAz5r56+ndX2UKGgGR0BjY9ejVQQ+aAdN6ANoCEdAoARNFfAsTXV9lChoBkdALYkyLyc0+GgHS6hoCEdAoAeSxPfsNXV9lChoBkdAY8SX6ZYxL2gHTegDaAhHQKAKaqsEJSl1fZQoaAZHQDW6R5kbxVhoB0t7aAhHQKALR0hePaN1fZQoaAZHQF2mahHskY5oB03oA2gIR0CgEXqhUR4AdX2UKGgGR0A+fU7Sy+pPaAdLt2gIR0CgEoH8CPp7dX2UKGgGR0BgmqWZ7XxwaAdN6ANoCEdAoBOwjv/ipHV9lChoBkdARl9wPy08eWgHS75oCEdAoBRTUd7v5XV9lChoBkdAY1Xe9i+cpmgHTegDaAhHQKAVYHmA9V51fZQoaAZHQGO0uE25xzdoB03oA2gIR0CgFq6qsEJTdX2UKGgGR0BdUEfLcKw7aAdN6ANoCEdAoBec+kgwGnV9lChoBkdALnJT/ACW/2gHS7NoCEdAoBkHkkrwv3V9lChoBkdAOuCemNzbOGgHS9ZoCEdAoBlgtthuwXV9lChoBkdAXmF18stkF2gHTegDaAhHQKAaCBd2Pkt1fZQoaAZHQGKjzZpSJj5oB03oA2gIR0CgGkfJvHcUdX2UKGgGR0BdSxpDeCTVaAdN6ANoCEdAoBp5bUwztXV9lChoBkdAQeNWS2Yv4GgHS6toCEdAoBz2Q2dd3XV9lChoBkdAYynI91U2k2gHTegDaAhHQKAdVeiSJTF1fZQoaAZHQEZ9k8RtgrpoB0usaAhHQKAdz7kXDWN1fZQoaAZHQE+kEeQuEmJoB0uuaAhHQKAgbuRcNYt1fZQoaAZHQGQyBCUornVoB03oA2gIR0CgI1rCm/FjdX2UKGgGR0Bk1mN70Fr3aAdN6ANoCEdAoCO56QeV9nV9lChoBkdAZDvXeWOZLWgHTegDaAhHQKBw7XTVlPJ1fZQoaAZHQGJuyGzru6VoB03oA2gIR0CgcXtVJcxCdX2UKGgGR0Bi70HGCI1taAdN6ANoCEdAoHPtZzPrwHV9lChoBkdAZm3XuE25x2gHTegDaAhHQKB0b7Ikqtp1fZQoaAZHQGee/i5uqFRoB03oA2gIR0Cgd8IEbHZLdX2UKGgGR0Azv/PgNwzdaAdLrWgIR0CgemrM1TBJdX2UKGgGR0BmUvTVlPJraAdN6ANoCEdAoHsrviLl3nV9lChoBkdAY7EAqd6LO2gHTegDaAhHQKB7yYWtU4t1fZQoaAZHQGLj4MfA9FFoB03oA2gIR0CgfRpB5X2edX2UKGgGR0BjVGi35N48aAdN6ANoCEdAoIM+CVbA13V9lChoBkdAJ/opH7P6bmgHS6hoCEdAoIXsTewcHXV9lChoBkdAYtbRJmNBGGgHTegDaAhHQKCHy/xlQMx1fZQoaAZHQF6DQd0aIepoB03oA2gIR0CgiEfFirksdX2UKGgGR0BjwljoZAIIaAdN6ANoCEdAoItMjRlYl3V9lChoBkdAW31Mbm2b5WgHTegDaAhHQKCPbrZ8KHB1fZQoaAZHQGPNWZqmCRRoB03oA2gIR0CglWFlTWGzdX2UKGgGR0BesyTt9hJAaAdN6ANoCEdAoJW/8uSOinV9lChoBkdARW3HNorWiGgHS69oCEdAoJYDlRxcV3V9lChoBkdAYPP1h9b5dmgHTegDaAhHQKCbBcHnln11fZQoaAZHQGKeIS13MZBoB03oA2gIR0CgoF5dfLLZdX2UKGgGR0BQixLXcxj8aAdL0GgIR0CgpPrRSgoPdX2UKGgGR0BE8MV1wHZ9aAdLz2gIR0CgpTFVktmMdX2UKGgGR0Bm1LypaRp2aAdN6ANoCEdAoKdo57w8XHV9lChoBkdASbZnpSrHVGgHS61oCEdAoKgiyWzF/HV9lChoBkdAZy/+GXXyy2gHTegDaAhHQKCoPaaCtih1fZQoaAZHQGJnesPrfLtoB03oA2gIR0Cgq7wkHD77dX2UKGgGR0BmFSlabF0gaAdN6ANoCEdAoK05Cpm29nV9lChoBkdAYKnWe6I3zmgHTegDaAhHQKCvbl2/zrh1fZQoaAZHQGNA1LzwtrdoB03oA2gIR0Cgr/zGHYYjdX2UKGgGR0BjNuh7E5yVaAdN6ANoCEdAoLEEA3kxRHV9lChoBkdAYaV3pOerdWgHTegDaAhHQKCxZ0Eovzx1fZQoaAZHQGLRcxsVLzxoB03oA2gIR0Cgsa3L3bmEdX2UKGgGR0Bbo2jsUqQSaAdN6ANoCEdAoLUJU1hsqXV9lChoBkdAZUf8F6iTMmgHTegDaAhHQKC1bRgqmTF1fZQoaAZHQGeFWE9Mbm5oB03oA2gIR0CgteiFTNt7dX2UKGgGR0Atk73fyf+TaAdLWmgIR0CgtvqlP8AJdX2UKGgGR0BlDKXY150KaAdN6ANoCEdAoLh+sDGLk3V9lChoBkdAQn2717IDHWgHS4RoCEdAoLk5Ixxku3V9lChoBkdAY7uYb83uNWgHTegDaAhHQKC7RbGm1pl1fZQoaAZHv/QEdNnGsFNoB0ulaAhHQKC8NWEK3NN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ea508f55000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ea508f55090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ea508f55120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ea508f551b0>", "_build": "<function ActorCriticPolicy._build at 0x7ea508f55240>", "forward": "<function ActorCriticPolicy.forward at 0x7ea508f552d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ea508f55360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ea508f553f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ea508f55480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ea508f55510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ea508f555a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ea508f55630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea528c49180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699242870560677449, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAIB1mT1ID6K6y2B+uiAygLXZtQ46Jy6SOQAAgD8AAIA/M+aIPSlQNrpeGI+7KqDMtrnUTLoSGqc6AACAPwAAgD/a0LK9NK2PPpbpHT6OaYi+tw/FvJ08vjoAAAAAAAAAAGZCcj3sWeS5xpQ7OoQaSDXuGdE6a2hYuQAAgD8AAIA/TcfPPcNVFrrc54A53UThNMVtezuSv5e4AACAPwAAAADzZNc9j+5IulXH87njABQ2rELMOrpfh7UAAIA/AACAPxqJFD5IEYk7aU4HvJ0FELpwpRo9ShkJuwAAgD8AAIA/Zir0u4/GZ7pRCQE8ReXgtR9GPjuFitS0AACAPwAAgD+znhM94VCduj0xazpG2eI19v2QOh8th7kAAIA/AACAP5r9x7xSKPS5ksQJu8D8J7V7fxg7ClUkOgAAgD8AAIA/zVw5Pk7TlLyq3c48jj6vOoOJBb6UrZK7AACAPwAAgD8ajKY9j94KurAB3bujk7U48UlAOsgpkDkAAIA/AACAP2YP0bwuUaI/JN5FvWJ26L7MDCo9FgGcvQAAAAAAAAAAAFQMvVwDNrrCyF477/+EN74b4Lqtyjq6AACAPwAAgD+tLyg+9nc9vEIDJzz9rhS6ZfCsvWvUULsAAIA/AACAP83KAD574ti6JqPeO/BUUblfCQS80gY2ugAAgD8AAIA/k3olPoVCq7vCpfw7UB2zub4NIb2UVaS6AACAPwAAgD8mPb89e5iGukXR6zmuKSgzQscyOyS2MjMAAIA/AACAP8qdtL7ib14/cmT6uyBM0b6XFbW+os6rPAAAAAAAAAAATUwnPcPtF7ohlsW8xMVbvPFUebvm+T+9AAAAAAAAgD8zS9+75eH0PhU6UzzpJ7i+NCQ6vluCNL0AAAAAAAAAAMCZ3z17xIq6IIXwumIcG7V1YSm71PgIOgAAgD8AAIA/ADxmvEj7grqbL9s6RKk/tNnXPrvKGvu5AACAPwAAgD/N8748hTOcuRrme7tORoQ3jtmOuiAA6rYAAIA/AACAP7Pr4T3DpR265rsBvB8QmrbWxHQ7MwgONgAAgD8AAIA/s7fePR9torkS0TY7C1nLN2xtULu6UYm1AACAPwAAgD/NnVM9XMMzustaMzsbdLE3NG+cuE3rgrUAAIA/AACAP7O3L77RCms+FRCqPfMWpr5OSsW88njkvQAAAAAAAAAAAGdtPXvIgLo2P+E6s/O1tIHNEbt/6QC6AACAPwAAgD9NRTE9bQmaP2jTFT6PkOi+8wTfPfOh3TwAAAAAAAAAAOZ0YD3pRxM+k1OevP7peL5iUJG8nePzvAAAAAAAAAAAGllhPVyrPLpesxq76VQQttfPpjq5pTE6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEg+VYZEUj+MAWyUS6KMAXSUR0CQ1VMRpUPydX2UKGgGR0Bg+Lz3AVO9aAdN6ANoCEdAkNmBzq8lHHV9lChoBkdATswaWHDaXmgHS7FoCEdAkN5QzP8htHV9lChoBkdAX3GKGcnVomgHTegDaAhHQJDe3UqhDgJ1fZQoaAZHQGUOEEcKgI1oB03oA2gIR0CQ3//4qPOqdX2UKGgGR0Bh/+WMS9M9aAdN6ANoCEdAkOF3QQcxTXV9lChoBkdAXdBkjHGS6mgHTegDaAhHQJDkofbKzRh1fZQoaAZHQDc6bx3FDOVoB0ueaAhHQJDok065oXd1fZQoaAZHQF+ssxfv4M5oB03oA2gIR0CQ6Uw97ngYdX2UKGgGR0BmiQmzByjpaAdN6ANoCEdAkOmasIVuaXV9lChoBkdAYn5IbwSamWgHTegDaAhHQJDqA0Mw1zh1fZQoaAZHQF728jiXIENoB03oA2gIR0CQ7qSrYGt7dX2UKGgGR0BkwnNs3yZsaAdN6ANoCEdAkPBcslLOA3V9lChoBkdAYxpwrlNlAmgHTegDaAhHQJDwlDpkf9x1fZQoaAZHQGVEiv5gw49oB03oA2gIR0CQ+IQiRnvldX2UKGgGR0BVMBHG0eEJaAdLw2gIR0CQ+KTHKfWddX2UKGgGR0BjWnp4bCJoaAdN6ANoCEdAkPsc7p3X7XV9lChoBkdAZL7o/RmbsmgHTegDaAhHQJD9eqCHymR1fZQoaAZHQCkcjAzpHI9oB0vPaAhHQJD/YD3dsSF1fZQoaAZHQGKnSaEzwc5oB03oA2gIR0CRAJ8pTdcjdX2UKGgGR0BJsTch1TzeaAdLxGgIR0CRAwCm/FisdX2UKGgGR0A/BHXEqDsdaAdLzWgIR0CRBevMr3CbdX2UKGgGR0BguDYNAkcCaAdN6ANoCEdAkQ83BtUGV3V9lChoBkdAUhNwAEMb32gHS8FoCEdAkQ/dxIatLnV9lChoBkdAYI0U21lXimgHTegDaAhHQJEStvDP4VR1fZQoaAZHQGPFIHs1KoRoB03oA2gIR0CRHKg/1QIldX2UKGgGR0BipeK2rn1WaAdN6ANoCEdAkR30oWpIc3V9lChoBkdAYXbyWiUPhGgHTegDaAhHQJEgfPZ7HAB1fZQoaAZHQGBjl1r6+FloB03oA2gIR0CRJExk/bCadX2UKGgGR0Bk6mYfGMn7aAdN6ANoCEdAkVCkzCUHIXV9lChoBkdAZldaGpMpPWgHTegDaAhHQJFTp35eqrB1fZQoaAZHQGJcx2r4nF5oB03oA2gIR0CRV8aLXL/0dX2UKGgGR0BkIOSjgydnaAdN6ANoCEdAkWHy1mapgnV9lChoBkdAXVLDk2gnMWgHTegDaAhHQJFiSPhhpg11fZQoaAZHQGWZnB+F10VoB03oA2gIR0CRYtl41P30dX2UKGgGR0BiV9KdxyXEaAdN6ANoCEdAkWi92X9it3V9lChoBkdAY8jOs1baAWgHTegDaAhHQJFpqCPIXCV1fZQoaAZHQEWEiXY150NoB0vIaAhHQJFuH4bjtHB1fZQoaAZHQGNxKhDgIhRoB03oA2gIR0CRb2AY51eTdX2UKGgGR0BMIQ+dK/VRaAdLp2gIR0CRc/uejEehdX2UKGgGR0BhM0VFhG6PaAdN6ANoCEdAkXQZQtSQ5nV9lChoBkdAYt1ZGKAJ9mgHTegDaAhHQJF3bLmp2ll1fZQoaAZHQGTB43WFvhtoB03oA2gIR0CRd/XjENvwdX2UKGgGR0BemmPLgXMyaAdN6ANoCEdAkXjunqFAV3V9lChoBkdAZTAfozN2T2gHTegDaAhHQJF6T003wTd1fZQoaAZHQDPiEJ0GNaRoB0vYaAhHQJGAns7dSEV1fZQoaAZHQGdWiz9jwx5oB03oA2gIR0CRgqmDDjzadX2UKGgGR0BkKAIY3vQXaAdN6ANoCEdAkYOgtOEdvXV9lChoBkdAZ4NX8wYcemgHTegDaAhHQJGEBx82Ji11fZQoaAZHQGKQegDifg9oB03oA2gIR0CRjat1ZDArdX2UKGgGR0BkB1lRP421aAdN6ANoCEdAkZfwdjoZAXV9lChoBkdAXzdM10knkWgHTegDaAhHQJGaxuBMBZJ1fZQoaAZHQGIhVktmL+BoB03oA2gIR0CRnY5M10kodX2UKGgGR0Bi1ro4dZJTaAdN6ANoCEdAkZ+njp9qlHV9lChoBkdAZAUk5ZKWcGgHTegDaAhHQJGhDq8lHBl1fZQoaAZHQGcESy2QXANoB03oA2gIR0CRo6w84giedX2UKGgGR0Bjcp7b+Lm7aAdN6ANoCEdAkabsA/9pAXV9lChoBkdAR89ie/YapGgHS7FoCEdAkayR91EE1XV9lChoBkdAZaR/Nqxkd2gHTegDaAhHQJGt23/givB1fZQoaAZHQGVZBd+ocaRoB03oA2gIR0CRrlKE384xdX2UKGgGR0BlQhEORT0haAdN6ANoCEdAkbBCQxN7B3V9lChoBkdAZG6w8nuy/2gHTegDaAhHQJG3s4Qz1sd1fZQoaAZHQGGthClabF1oB03oA2gIR0CRuPCzkZJkdX2UKGgGR0BiQ+tr9EThaAdN6ANoCEdAkbvLItDlYHV9lChoBkdAZsiWO6unuWgHTegDaAhHQJHBMpb2USt1fZQoaAZHQFEw+aScLBtoB0u3aAhHQJHGGhf0Eox1fZQoaAZHQGd0MzVMEidoB03oA2gIR0CRy6ZUT+NtdX2UKGgGR0BcghIBikO7aAdN6ANoCEdAkfDJbD/EO3V9lChoBkdAZYdLoOhCdGgHTegDaAhHQJICicLBsRB1fZQoaAZHQGIGdg4OtnxoB03oA2gIR0CSA3lXA/LUdX2UKGgGR0BgWn9ehPCVaAdN6ANoCEdAkgznQID5kHV9lChoBkdAY9ccdYGMXWgHTegDaAhHQJITARh+fAd1fZQoaAZHQGGsDyOJcgRoB03oA2gIR0CSFIrLQokSdX2UKGgGR0BfJltCRfWuaAdN6ANoCEdAkhm9US7GvXV9lChoBkdAYYspda+vhmgHTegDaAhHQJIZ6DrZ8KJ1fZQoaAZHQGQ/ZbQkX1toB03oA2gIR0CSHYW912aEdX2UKGgGR0Bbx0HlfZ27aAdN6ANoCEdAkh4fcFhXsHV9lChoBkdAY41hGYrrgWgHTegDaAhHQJIfKzRhMJx1fZQoaAZHQGJbVfVqeshoB03oA2gIR0CSII+l0o0AdX2UKGgGR0Bl6CWszVMFaAdN6ANoCEdAkiY+5rgwXnV9lChoBkdAY71G0eEIxGgHTegDaAhHQJInqxu89Oh1fZQoaAZHQGcof+jua4NoB03oA2gIR0CSKFnQID5kdX2UKGgGR0BmhlD2JzkqaAdN6ANoCEdAkiimAoXsPnV9lChoBkdAYrdUy57PZGgHTegDaAhHQJIvYDbJwKl1fZQoaAZHQGS5e4Cp3otoB03oA2gIR0CSPRbX6InCdX2UKGgGR0BdKSmMwUQDaAdN6ANoCEdAkkD5r1uivnV9lChoBkdAY3DtlZowmGgHTegDaAhHQJJD9h+fAbh1fZQoaAZHQGJhAmiQDFJoB03oA2gIR0CSRgEDyOJddX2UKGgGR0BmjCCcwxnGaAdN6ANoCEdAkknIREnb7HV9lChoBkdAYN6JKJ2t+2gHTegDaAhHQJJM6HIp6Qh1fZQoaAZHQGBRGYrrgO1oB03oA2gIR0CSUqixVyWBdX2UKGgGR0BjRqrT6SDAaAdN6ANoCEdAklP0078vVXV9lChoBkdAZdxb/Ot4iWgHTegDaAhHQJJWdsHjZL91fZQoaAZHQGWV80cfeUJoB03oA2gIR0CSXmOv+wTudX2UKGgGR0BovRaJQ+EAaAdN6ANoCEdAkl+wSWZ7X3V9lChoBkdAYtBa1TisGWgHTegDaAhHQJJiUPoV2zR1fZQoaAZHQGcaYC6pYLdoB03oA2gIR0CSZkp1A7gbdX2UKGgGR0BmWgDoyKvWaAdN6ANoCEdAkmnk5dWyT3V9lChoBkdAYw6hxo7FKmgHTegDaAhHQJJtuLCN0eV1fZQoaAZHQGVGA7PppvhoB03oA2gIR0CSb8xGlQ/HdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8dc876ff3d1a983c6947b6015bea484212b74eb923262bac7793c8d512fc092
3
- size 148215
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb4bd7b4f48919c0eb9979e468b90b9709467db777764f5ad5a1a9c0789eab00
3
+ size 148738
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7daac08abb50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7daac08abbe0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7daac08abc70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7daac08abd00>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7daac08abd90>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7daac08abe20>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7daac08abeb0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7daac08abf40>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7daac0894040>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7daac08940d0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7daac0894160>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7daac08941f0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7daaca6a0e00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1698285933211794203,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAACayob0NUxI+uvNQPRJ9rr6LZNw9zSGEvQAAAAAAAAAA2iWzvVwzKroXeqC7B+J2OJvXqbsKOz46AAAAAAAAgD9t2So+NmoCvIBnZr6HcMK8wBmjPvYK2r0AAIA/AACAP3P2gz1Ia6a68kFuPCxngrxpfZA6M/pjvQAAAAAAAIA/INRJvi5dpry6Rie+Ut6QvKFQET64mWI9AACAPwAAgD/az+O9n1VJP8nrJj671dK+F4RGvl1nbT4AAAAAAAAAADNvWryFc925g42BPP7agjUlama77ZVxNAAAgD8AAIA/88vgvRSehLpkuCa7SxYwtsAKCTs4iz46AACAPwAAgD/69Lg+8Y82Pw4Bir1nOea+lMxjPsBy6L0AAAAAAAAAADOnvbwKt1a5utPzuzk4nDbNzAQ75KMPtgAAgD8AAIA/jY6LPYN5Yrx6Ls69wJG0PJSUxj2VYpG9AAAAAAAAgD8zFtA8XKseuo6u5jqTffc1IqAuOim3A7oAAIA/AACAPwDQwjr2xAK6EmVYOy4ChbYkcT+5CMN9ugAAgD8AAIA/mnAFvYXz87ndM+O7fEqPOJ9XsjqC8jU5AACAPwAAgD8A1Xy9rjSmvK5J0jx5KkE9zskDPtjn9rwAAIA/AACAPzNznj20xQ0+5TUyvmYjer59I7u9ZpuhPQAAAAAAAAAAzdlpPfZIPLqVE0E68U1RNS0OpDvwPWK5AACAPwAAgD+aC3E9w/ErugpnmztmP2a5Bi5luuGrQboAAIA/AACAP01Q3D0fTb+5McglPO6mAz3114G64/riOwAAAAAAAIA/zbq7vOE4iLoN0Sq88dzHtY1ZQLkSLzo1AACAPwAAgD+z03q9w+VbuvOhtTpdH3+2Ui9yOwg+0rkAAIA/AACAPwCguDztlOs+bkZNvSZskr5Y3U292BcPPQAAAAAAAAAAkzhGvjYBWbzk4BY2awynsAAvxT2XhyC1AACAPwAAgD8zJS29Ro6hP4USG75Lwd6+oxAvvToRHD0AAAAAAAAAAGZ+s7wpGDW6mgavusNiObbm0DO6+QXLOQAAgD8AAIA/2oufvU3Kiz/dnBq+FWDUvk1u0L0KivK8AAAAAAAAAACaeT+8KWwjurf0lTlk1Y61e8X6uo7vrbgAAIA/AACAP80dlD3DNT+6ej2ZurBX9DcXHwe7qgchOQAAgD8AAIA/SBGUvs782j5gfKQ+toSuvpTVpL3rdmk9AAAAAAAAAACaaXc79qRkut1QK7wZCtu12JmVuZqpSzUAAIA/AACAP5qXC732UB+6NvxTvM72ZLzbl/06VURIvQAAAAAAAIA/Grm5PVyTSLqQC9O4vr2etSjOsjrty+83AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFz6epXIU8GMAWyUTegDjAF0lEdAns9aFuejEnV9lChoBkdAZ7ZMbm2b5WgHTegDaAhHQJ7SDS+g13t1fZQoaAZHQDx6RSxZ+x5oB0vJaAhHQJ7UUJWvKU51fZQoaAZHQGYwrsjVx0doB03oA2gIR0Ce3ZqEeyRkdX2UKGgGR0BiEfz+WGATaAdN6ANoCEdAnugq3d9DyHV9lChoBkdAY2P91EE1VGgHTegDaAhHQJ7sxETg2qF1fZQoaAZHQGS1In0Cih5oB03oA2gIR0Ce8Gvq1PWQdX2UKGgGR0BjHrEaVD8caAdN6ANoCEdAnvOuw5eZ5XV9lChoBkdAYXlYFJQLu2gHTegDaAhHQJ72e/Dcdo51fZQoaAZHQGPUufmLcbloB03oA2gIR0Ce+rM23rledX2UKGgGR0BnCNNnGsFMaAdN6ANoCEdAnv2xOtW+5HV9lChoBkdAZxdB2OhkAmgHTegDaAhHQJ7+eDwpe/p1fZQoaAZHQGMvBqTKT0RoB03oA2gIR0Ce/wiqABkqdX2UKGgGR0Be/SmhufmLaAdN6ANoCEdAnwfaDf3vhXV9lChoBkdAY93MyrPt2WgHTegDaAhHQJ+vxOymhuh1fZQoaAZHQGVK+UQkHD9oB03oA2gIR0CfsJj8k2P1dX2UKGgGR0BNP5eJHiFTaAdL1mgIR0Cftpl/H5rQdX2UKGgGR0BflBP420iRaAdN6ANoCEdAn7duanaWX3V9lChoBkdAZQ/T1CgK4WgHTegDaAhHQJ+7IuEmICV1fZQoaAZHQGEitgrpaA5oB03oA2gIR0CfvDcPe54GdX2UKGgGR0BiE4jKPn0TaAdN6ANoCEdAn8MbM9r433V9lChoBkdAY7i3vQWvbGgHTegDaAhHQJ/I34rSVnp1fZQoaAZHQGDUiaJAMUhoB03oA2gIR0CfyjXIU8FIdX2UKGgGR0BjO2TPjXFtaAdN6ANoCEdAn8t0b961LXV9lChoBkdAZMh14gRsdmgHTegDaAhHQJ/PT1OCXhR1fZQoaAZHQGEtuhCdBjZoB03oA2gIR0Cf1cZ2IO6NdX2UKGgGR0BkNUEovzvraAdN6ANoCEdAn+DSjk+5fHV9lChoBkdAW4+pFTefqWgHTegDaAhHQJ/lsYFaB7N1fZQoaAZHQEiKPMjeKsNoB0u/aAhHQJ/qYafjCHh1fZQoaAZHQGQKJiiItUZoB03oA2gIR0Cf6xoePq9odX2UKGgGR0Bge9kxyn1naAdN6ANoCEdAn+9ZfYzzmXV9lChoBkdAY/C3x4IKMWgHTegDaAhHQJ/03zoUzsR1fZQoaAZHQFIkT6i0v5BoB0vNaAhHQJ/2IDTz/ZN1fZQoaAZHQELkvQF9roJoB0uvaAhHQJ/9sQAdXDF1fZQoaAZHQGJoDABT4tZoB03oA2gIR0Cf/nbiqABldX2UKGgGR0Blnejh1klNaAdN6ANoCEdAoADo20iQk3V9lChoBkdAY5aALiMo+mgHTegDaAhHQKAB9oA4n4R1fZQoaAZHQGbN7VJ+UhVoB03oA2gIR0CgAz5r56+ndX2UKGgGR0BjY9ejVQQ+aAdN6ANoCEdAoARNFfAsTXV9lChoBkdALYkyLyc0+GgHS6hoCEdAoAeSxPfsNXV9lChoBkdAY8SX6ZYxL2gHTegDaAhHQKAKaqsEJSl1fZQoaAZHQDW6R5kbxVhoB0t7aAhHQKALR0hePaN1fZQoaAZHQF2mahHskY5oB03oA2gIR0CgEXqhUR4AdX2UKGgGR0A+fU7Sy+pPaAdLt2gIR0CgEoH8CPp7dX2UKGgGR0BgmqWZ7XxwaAdN6ANoCEdAoBOwjv/ipHV9lChoBkdARl9wPy08eWgHS75oCEdAoBRTUd7v5XV9lChoBkdAY1Xe9i+cpmgHTegDaAhHQKAVYHmA9V51fZQoaAZHQGO0uE25xzdoB03oA2gIR0CgFq6qsEJTdX2UKGgGR0BdUEfLcKw7aAdN6ANoCEdAoBec+kgwGnV9lChoBkdALnJT/ACW/2gHS7NoCEdAoBkHkkrwv3V9lChoBkdAOuCemNzbOGgHS9ZoCEdAoBlgtthuwXV9lChoBkdAXmF18stkF2gHTegDaAhHQKAaCBd2Pkt1fZQoaAZHQGKjzZpSJj5oB03oA2gIR0CgGkfJvHcUdX2UKGgGR0BdSxpDeCTVaAdN6ANoCEdAoBp5bUwztXV9lChoBkdAQeNWS2Yv4GgHS6toCEdAoBz2Q2dd3XV9lChoBkdAYynI91U2k2gHTegDaAhHQKAdVeiSJTF1fZQoaAZHQEZ9k8RtgrpoB0usaAhHQKAdz7kXDWN1fZQoaAZHQE+kEeQuEmJoB0uuaAhHQKAgbuRcNYt1fZQoaAZHQGQyBCUornVoB03oA2gIR0CgI1rCm/FjdX2UKGgGR0Bk1mN70Fr3aAdN6ANoCEdAoCO56QeV9nV9lChoBkdAZDvXeWOZLWgHTegDaAhHQKBw7XTVlPJ1fZQoaAZHQGJuyGzru6VoB03oA2gIR0CgcXtVJcxCdX2UKGgGR0Bi70HGCI1taAdN6ANoCEdAoHPtZzPrwHV9lChoBkdAZm3XuE25x2gHTegDaAhHQKB0b7Ikqtp1fZQoaAZHQGee/i5uqFRoB03oA2gIR0Cgd8IEbHZLdX2UKGgGR0Azv/PgNwzdaAdLrWgIR0CgemrM1TBJdX2UKGgGR0BmUvTVlPJraAdN6ANoCEdAoHsrviLl3nV9lChoBkdAY7EAqd6LO2gHTegDaAhHQKB7yYWtU4t1fZQoaAZHQGLj4MfA9FFoB03oA2gIR0CgfRpB5X2edX2UKGgGR0BjVGi35N48aAdN6ANoCEdAoIM+CVbA13V9lChoBkdAJ/opH7P6bmgHS6hoCEdAoIXsTewcHXV9lChoBkdAYtbRJmNBGGgHTegDaAhHQKCHy/xlQMx1fZQoaAZHQF6DQd0aIepoB03oA2gIR0CgiEfFirksdX2UKGgGR0BjwljoZAIIaAdN6ANoCEdAoItMjRlYl3V9lChoBkdAW31Mbm2b5WgHTegDaAhHQKCPbrZ8KHB1fZQoaAZHQGPNWZqmCRRoB03oA2gIR0CglWFlTWGzdX2UKGgGR0BesyTt9hJAaAdN6ANoCEdAoJW/8uSOinV9lChoBkdARW3HNorWiGgHS69oCEdAoJYDlRxcV3V9lChoBkdAYPP1h9b5dmgHTegDaAhHQKCbBcHnln11fZQoaAZHQGKeIS13MZBoB03oA2gIR0CgoF5dfLLZdX2UKGgGR0BQixLXcxj8aAdL0GgIR0CgpPrRSgoPdX2UKGgGR0BE8MV1wHZ9aAdLz2gIR0CgpTFVktmMdX2UKGgGR0Bm1LypaRp2aAdN6ANoCEdAoKdo57w8XHV9lChoBkdASbZnpSrHVGgHS61oCEdAoKgiyWzF/HV9lChoBkdAZy/+GXXyy2gHTegDaAhHQKCoPaaCtih1fZQoaAZHQGJnesPrfLtoB03oA2gIR0Cgq7wkHD77dX2UKGgGR0BmFSlabF0gaAdN6ANoCEdAoK05Cpm29nV9lChoBkdAYKnWe6I3zmgHTegDaAhHQKCvbl2/zrh1fZQoaAZHQGNA1LzwtrdoB03oA2gIR0Cgr/zGHYYjdX2UKGgGR0BjNuh7E5yVaAdN6ANoCEdAoLEEA3kxRHV9lChoBkdAYaV3pOerdWgHTegDaAhHQKCxZ0Eovzx1fZQoaAZHQGLRcxsVLzxoB03oA2gIR0Cgsa3L3bmEdX2UKGgGR0Bbo2jsUqQSaAdN6ANoCEdAoLUJU1hsqXV9lChoBkdAZUf8F6iTMmgHTegDaAhHQKC1bRgqmTF1fZQoaAZHQGeFWE9Mbm5oB03oA2gIR0CgteiFTNt7dX2UKGgGR0Atk73fyf+TaAdLWmgIR0CgtvqlP8AJdX2UKGgGR0BlDKXY150KaAdN6ANoCEdAoLh+sDGLk3V9lChoBkdAQn2717IDHWgHS4RoCEdAoLk5Ixxku3V9lChoBkdAY7uYb83uNWgHTegDaAhHQKC7RbGm1pl1fZQoaAZHv/QEdNnGsFNoB0ulaAhHQKC8NWEK3NN1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -80,11 +80,11 @@
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
- "ent_coef": 0.05,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 32,
87
- "n_epochs": 8,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ea508f55000>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ea508f55090>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ea508f55120>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ea508f551b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ea508f55240>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ea508f552d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ea508f55360>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ea508f553f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ea508f55480>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ea508f55510>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ea508f555a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ea508f55630>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ea528c49180>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1699242870560677449,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAIB1mT1ID6K6y2B+uiAygLXZtQ46Jy6SOQAAgD8AAIA/M+aIPSlQNrpeGI+7KqDMtrnUTLoSGqc6AACAPwAAgD/a0LK9NK2PPpbpHT6OaYi+tw/FvJ08vjoAAAAAAAAAAGZCcj3sWeS5xpQ7OoQaSDXuGdE6a2hYuQAAgD8AAIA/TcfPPcNVFrrc54A53UThNMVtezuSv5e4AACAPwAAAADzZNc9j+5IulXH87njABQ2rELMOrpfh7UAAIA/AACAPxqJFD5IEYk7aU4HvJ0FELpwpRo9ShkJuwAAgD8AAIA/Zir0u4/GZ7pRCQE8ReXgtR9GPjuFitS0AACAPwAAgD+znhM94VCduj0xazpG2eI19v2QOh8th7kAAIA/AACAP5r9x7xSKPS5ksQJu8D8J7V7fxg7ClUkOgAAgD8AAIA/zVw5Pk7TlLyq3c48jj6vOoOJBb6UrZK7AACAPwAAgD8ajKY9j94KurAB3bujk7U48UlAOsgpkDkAAIA/AACAP2YP0bwuUaI/JN5FvWJ26L7MDCo9FgGcvQAAAAAAAAAAAFQMvVwDNrrCyF477/+EN74b4Lqtyjq6AACAPwAAgD+tLyg+9nc9vEIDJzz9rhS6ZfCsvWvUULsAAIA/AACAP83KAD574ti6JqPeO/BUUblfCQS80gY2ugAAgD8AAIA/k3olPoVCq7vCpfw7UB2zub4NIb2UVaS6AACAPwAAgD8mPb89e5iGukXR6zmuKSgzQscyOyS2MjMAAIA/AACAP8qdtL7ib14/cmT6uyBM0b6XFbW+os6rPAAAAAAAAAAATUwnPcPtF7ohlsW8xMVbvPFUebvm+T+9AAAAAAAAgD8zS9+75eH0PhU6UzzpJ7i+NCQ6vluCNL0AAAAAAAAAAMCZ3z17xIq6IIXwumIcG7V1YSm71PgIOgAAgD8AAIA/ADxmvEj7grqbL9s6RKk/tNnXPrvKGvu5AACAPwAAgD/N8748hTOcuRrme7tORoQ3jtmOuiAA6rYAAIA/AACAP7Pr4T3DpR265rsBvB8QmrbWxHQ7MwgONgAAgD8AAIA/s7fePR9torkS0TY7C1nLN2xtULu6UYm1AACAPwAAgD/NnVM9XMMzustaMzsbdLE3NG+cuE3rgrUAAIA/AACAP7O3L77RCms+FRCqPfMWpr5OSsW88njkvQAAAAAAAAAAAGdtPXvIgLo2P+E6s/O1tIHNEbt/6QC6AACAPwAAgD9NRTE9bQmaP2jTFT6PkOi+8wTfPfOh3TwAAAAAAAAAAOZ0YD3pRxM+k1OevP7peL5iUJG8nePzvAAAAAAAAAAAGllhPVyrPLpesxq76VQQttfPpjq5pTE6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEg+VYZEUj+MAWyUS6KMAXSUR0CQ1VMRpUPydX2UKGgGR0Bg+Lz3AVO9aAdN6ANoCEdAkNmBzq8lHHV9lChoBkdATswaWHDaXmgHS7FoCEdAkN5QzP8htHV9lChoBkdAX3GKGcnVomgHTegDaAhHQJDe3UqhDgJ1fZQoaAZHQGUOEEcKgI1oB03oA2gIR0CQ3//4qPOqdX2UKGgGR0Bh/+WMS9M9aAdN6ANoCEdAkOF3QQcxTXV9lChoBkdAXdBkjHGS6mgHTegDaAhHQJDkofbKzRh1fZQoaAZHQDc6bx3FDOVoB0ueaAhHQJDok065oXd1fZQoaAZHQF+ssxfv4M5oB03oA2gIR0CQ6Uw97ngYdX2UKGgGR0BmiQmzByjpaAdN6ANoCEdAkOmasIVuaXV9lChoBkdAYn5IbwSamWgHTegDaAhHQJDqA0Mw1zh1fZQoaAZHQF728jiXIENoB03oA2gIR0CQ7qSrYGt7dX2UKGgGR0BkwnNs3yZsaAdN6ANoCEdAkPBcslLOA3V9lChoBkdAYxpwrlNlAmgHTegDaAhHQJDwlDpkf9x1fZQoaAZHQGVEiv5gw49oB03oA2gIR0CQ+IQiRnvldX2UKGgGR0BVMBHG0eEJaAdLw2gIR0CQ+KTHKfWddX2UKGgGR0BjWnp4bCJoaAdN6ANoCEdAkPsc7p3X7XV9lChoBkdAZL7o/RmbsmgHTegDaAhHQJD9eqCHymR1fZQoaAZHQCkcjAzpHI9oB0vPaAhHQJD/YD3dsSF1fZQoaAZHQGKnSaEzwc5oB03oA2gIR0CRAJ8pTdcjdX2UKGgGR0BJsTch1TzeaAdLxGgIR0CRAwCm/FisdX2UKGgGR0A/BHXEqDsdaAdLzWgIR0CRBevMr3CbdX2UKGgGR0BguDYNAkcCaAdN6ANoCEdAkQ83BtUGV3V9lChoBkdAUhNwAEMb32gHS8FoCEdAkQ/dxIatLnV9lChoBkdAYI0U21lXimgHTegDaAhHQJEStvDP4VR1fZQoaAZHQGPFIHs1KoRoB03oA2gIR0CRHKg/1QIldX2UKGgGR0BipeK2rn1WaAdN6ANoCEdAkR30oWpIc3V9lChoBkdAYXbyWiUPhGgHTegDaAhHQJEgfPZ7HAB1fZQoaAZHQGBjl1r6+FloB03oA2gIR0CRJExk/bCadX2UKGgGR0Bk6mYfGMn7aAdN6ANoCEdAkVCkzCUHIXV9lChoBkdAZldaGpMpPWgHTegDaAhHQJFTp35eqrB1fZQoaAZHQGJcx2r4nF5oB03oA2gIR0CRV8aLXL/0dX2UKGgGR0BkIOSjgydnaAdN6ANoCEdAkWHy1mapgnV9lChoBkdAXVLDk2gnMWgHTegDaAhHQJFiSPhhpg11fZQoaAZHQGWZnB+F10VoB03oA2gIR0CRYtl41P30dX2UKGgGR0BiV9KdxyXEaAdN6ANoCEdAkWi92X9it3V9lChoBkdAY8jOs1baAWgHTegDaAhHQJFpqCPIXCV1fZQoaAZHQEWEiXY150NoB0vIaAhHQJFuH4bjtHB1fZQoaAZHQGNxKhDgIhRoB03oA2gIR0CRb2AY51eTdX2UKGgGR0BMIQ+dK/VRaAdLp2gIR0CRc/uejEehdX2UKGgGR0BhM0VFhG6PaAdN6ANoCEdAkXQZQtSQ5nV9lChoBkdAYt1ZGKAJ9mgHTegDaAhHQJF3bLmp2ll1fZQoaAZHQGTB43WFvhtoB03oA2gIR0CRd/XjENvwdX2UKGgGR0BemmPLgXMyaAdN6ANoCEdAkXjunqFAV3V9lChoBkdAZTAfozN2T2gHTegDaAhHQJF6T003wTd1fZQoaAZHQDPiEJ0GNaRoB0vYaAhHQJGAns7dSEV1fZQoaAZHQGdWiz9jwx5oB03oA2gIR0CRgqmDDjzadX2UKGgGR0BkKAIY3vQXaAdN6ANoCEdAkYOgtOEdvXV9lChoBkdAZ4NX8wYcemgHTegDaAhHQJGEBx82Ji11fZQoaAZHQGKQegDifg9oB03oA2gIR0CRjat1ZDArdX2UKGgGR0BkB1lRP421aAdN6ANoCEdAkZfwdjoZAXV9lChoBkdAXzdM10knkWgHTegDaAhHQJGaxuBMBZJ1fZQoaAZHQGIhVktmL+BoB03oA2gIR0CRnY5M10kodX2UKGgGR0Bi1ro4dZJTaAdN6ANoCEdAkZ+njp9qlHV9lChoBkdAZAUk5ZKWcGgHTegDaAhHQJGhDq8lHBl1fZQoaAZHQGcESy2QXANoB03oA2gIR0CRo6w84giedX2UKGgGR0Bjcp7b+Lm7aAdN6ANoCEdAkabsA/9pAXV9lChoBkdAR89ie/YapGgHS7FoCEdAkayR91EE1XV9lChoBkdAZaR/Nqxkd2gHTegDaAhHQJGt23/givB1fZQoaAZHQGVZBd+ocaRoB03oA2gIR0CRrlKE384xdX2UKGgGR0BlQhEORT0haAdN6ANoCEdAkbBCQxN7B3V9lChoBkdAZG6w8nuy/2gHTegDaAhHQJG3s4Qz1sd1fZQoaAZHQGGthClabF1oB03oA2gIR0CRuPCzkZJkdX2UKGgGR0BiQ+tr9EThaAdN6ANoCEdAkbvLItDlYHV9lChoBkdAZsiWO6unuWgHTegDaAhHQJHBMpb2USt1fZQoaAZHQFEw+aScLBtoB0u3aAhHQJHGGhf0Eox1fZQoaAZHQGd0MzVMEidoB03oA2gIR0CRy6ZUT+NtdX2UKGgGR0BcghIBikO7aAdN6ANoCEdAkfDJbD/EO3V9lChoBkdAZYdLoOhCdGgHTegDaAhHQJICicLBsRB1fZQoaAZHQGIGdg4OtnxoB03oA2gIR0CSA3lXA/LUdX2UKGgGR0BgWn9ehPCVaAdN6ANoCEdAkgznQID5kHV9lChoBkdAY9ccdYGMXWgHTegDaAhHQJITARh+fAd1fZQoaAZHQGGsDyOJcgRoB03oA2gIR0CSFIrLQokSdX2UKGgGR0BfJltCRfWuaAdN6ANoCEdAkhm9US7GvXV9lChoBkdAYYspda+vhmgHTegDaAhHQJIZ6DrZ8KJ1fZQoaAZHQGQ/ZbQkX1toB03oA2gIR0CSHYW912aEdX2UKGgGR0Bbx0HlfZ27aAdN6ANoCEdAkh4fcFhXsHV9lChoBkdAY41hGYrrgWgHTegDaAhHQJIfKzRhMJx1fZQoaAZHQGJbVfVqeshoB03oA2gIR0CSII+l0o0AdX2UKGgGR0Bl6CWszVMFaAdN6ANoCEdAkiY+5rgwXnV9lChoBkdAY71G0eEIxGgHTegDaAhHQJInqxu89Oh1fZQoaAZHQGcof+jua4NoB03oA2gIR0CSKFnQID5kdX2UKGgGR0BmhlD2JzkqaAdN6ANoCEdAkiimAoXsPnV9lChoBkdAYrdUy57PZGgHTegDaAhHQJIvYDbJwKl1fZQoaAZHQGS5e4Cp3otoB03oA2gIR0CSPRbX6InCdX2UKGgGR0BdKSmMwUQDaAdN6ANoCEdAkkD5r1uivnV9lChoBkdAY3DtlZowmGgHTegDaAhHQJJD9h+fAbh1fZQoaAZHQGJhAmiQDFJoB03oA2gIR0CSRgEDyOJddX2UKGgGR0BmjCCcwxnGaAdN6ANoCEdAkknIREnb7HV9lChoBkdAYN6JKJ2t+2gHTegDaAhHQJJM6HIp6Qh1fZQoaAZHQGBRGYrrgO1oB03oA2gIR0CSUqixVyWBdX2UKGgGR0BjRqrT6SDAaAdN6ANoCEdAklP0078vVXV9lChoBkdAZdxb/Ot4iWgHTegDaAhHQJJWdsHjZL91fZQoaAZHQGWV80cfeUJoB03oA2gIR0CSXmOv+wTudX2UKGgGR0BovRaJQ+EAaAdN6ANoCEdAkl+wSWZ7X3V9lChoBkdAYtBa1TisGWgHTegDaAhHQJJiUPoV2zR1fZQoaAZHQGcaYC6pYLdoB03oA2gIR0CSZkp1A7gbdX2UKGgGR0BmWgDoyKvWaAdN6ANoCEdAkmnk5dWyT3V9lChoBkdAYw6hxo7FKmgHTegDaAhHQJJtuLCN0eV1fZQoaAZHQGVGA7PppvhoB03oA2gIR0CSb8xGlQ/HdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 124,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df244b1f248da228a4429bff97a292a414440987d40cae2a3da19faeb301c932
3
- size 87978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5333b805a8ab6289cc86a3c498810e89ab39dcb456ae7c40c8031caf25c0de78
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fdc46095c3bd9750c66f866a6dea1c0343a66b63c2588da7d1dcc0f2c4fd797d
3
- size 43634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9657a63baf40867f72c40569cd27bed4a3462956afde52ed987f6000789029be
3
+ size 43762
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.1.0+cu118
5
- - GPU Enabled: False
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -122.83178432650357, "std_reward": 56.59713764776958, "n_evaluation_episodes": 10, "eval_datetime": "2023-11-05T13:49:36.374630"}
 
1
+ {"mean_reward": 249.3274329778937, "std_reward": 45.08295860333011, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-06T04:14:23.820848"}