update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-irish-colab_test
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-irish-colab_test
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.7839
|
20 |
+
- Wer: 0.6220
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 100
|
48 |
+
- num_epochs: 90
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 10.0428 | 2.94 | 50 | 4.1311 | 1.0 |
|
56 |
+
| 3.2917 | 5.88 | 100 | 3.1468 | 1.0 |
|
57 |
+
| 3.0221 | 8.82 | 150 | 2.9848 | 1.0 |
|
58 |
+
| 2.9795 | 11.76 | 200 | 2.9567 | 1.0 |
|
59 |
+
| 2.9379 | 14.71 | 250 | 2.9463 | 1.0 |
|
60 |
+
| 2.9068 | 17.65 | 300 | 2.8330 | 1.0 |
|
61 |
+
| 2.5088 | 20.59 | 350 | 1.9807 | 0.9535 |
|
62 |
+
| 1.6188 | 23.53 | 400 | 1.4254 | 0.8398 |
|
63 |
+
| 1.0435 | 26.47 | 450 | 1.3668 | 0.7807 |
|
64 |
+
| 0.7212 | 29.41 | 500 | 1.3914 | 0.7476 |
|
65 |
+
| 0.5456 | 32.35 | 550 | 1.5495 | 0.7470 |
|
66 |
+
| 0.4297 | 35.29 | 600 | 1.4751 | 0.6960 |
|
67 |
+
| 0.3533 | 38.24 | 650 | 1.5157 | 0.6909 |
|
68 |
+
| 0.2899 | 41.18 | 700 | 1.5394 | 0.6879 |
|
69 |
+
| 0.2529 | 44.12 | 750 | 1.6186 | 0.6903 |
|
70 |
+
| 0.2413 | 47.06 | 800 | 1.6386 | 0.6954 |
|
71 |
+
| 0.2113 | 50.0 | 850 | 1.6906 | 0.6778 |
|
72 |
+
| 0.1769 | 52.94 | 900 | 1.6918 | 0.6575 |
|
73 |
+
| 0.1622 | 55.88 | 950 | 1.7313 | 0.6572 |
|
74 |
+
| 0.1564 | 58.82 | 1000 | 1.7701 | 0.6510 |
|
75 |
+
| 0.1637 | 61.76 | 1050 | 1.6800 | 0.6444 |
|
76 |
+
| 0.148 | 64.71 | 1100 | 1.7306 | 0.6477 |
|
77 |
+
| 0.1385 | 67.65 | 1150 | 1.7605 | 0.6408 |
|
78 |
+
| 0.1264 | 70.59 | 1200 | 1.7534 | 0.6244 |
|
79 |
+
| 0.1157 | 73.53 | 1250 | 1.7906 | 0.6381 |
|
80 |
+
| 0.1027 | 76.47 | 1300 | 1.7803 | 0.6265 |
|
81 |
+
| 0.1061 | 79.41 | 1350 | 1.7617 | 0.6259 |
|
82 |
+
| 0.0934 | 82.35 | 1400 | 1.7649 | 0.6253 |
|
83 |
+
| 0.0904 | 85.29 | 1450 | 1.7713 | 0.6187 |
|
84 |
+
| 0.0911 | 88.24 | 1500 | 1.7839 | 0.6220 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.11.3
|
90 |
+
- Pytorch 1.10.0+cu111
|
91 |
+
- Datasets 1.18.3
|
92 |
+
- Tokenizers 0.10.3
|