{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbd508737f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbd50873880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbd50873910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbd508739a0>", "_build": "<function ActorCriticPolicy._build at 0x7fbd50873a30>", "forward": "<function ActorCriticPolicy.forward at 0x7fbd50873ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbd50873b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbd50873be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbd50873c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbd50873d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbd50873d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbd50873e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbd5081d500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727928059512282319, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOAjDyasa8/tYURP44BGL+BxW28coWBvQAAAAAAAAAAgPaAvjflYD+peJ++B5zRvigXjL5uYUo8AAAAAAAAAAAANTA++1DKO6ByXDpGRgA4krpaPTeRibkAAIA/AACAP7OnNb2TnIY/8BhXvY/R6b59Iha9PZBOvQAAAAAAAAAAbXJdPqOHRj+/Nyw+Q4Llvq/xBz5eWUi9AAAAAAAAAAA6bS0+yLWZvGr+3TzeAYS7pIcJvj7wUbwAAIA/AACAP2Z8Mr7s4wc/dS9dPRJ7zb5OQqe9UnKCPQAAAAAAAAAAU/oyPuHjmryAPt07LIxvuqg8Dr6NNT+7AACAPwAAgD/TtDO+7lyVvKh5mLtX2Pi5ZxMOPlZ01DoAAIA/AACAPz0yVr4yoow/wMx8vu4j6L6ceUW+rcbrPAAAAAAAAAAAc7yovWC1Bz+L4o28jNrLvrx51bwa8hq9AAAAAAAAAADa0pG9QzkEvIABaz216Ys9gawCvcv20TwAAIA/AACAPzYsjz6Pxk4/HH+sPrw+175mfUY+xBCWPQAAAAAAAAAAWuSNvT3EHbtwQQ+7LEuOPCbURbyzxHU9AACAPwAAgD/N4Uu+AseEPwkFlL5rvwe/T0ZgvuatXr0AAAAAAAAAAMbSVj6b7LG8uX5HN5PhnjaLxhy+msCGtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3F5f+jua6MAWyUTTkBjAF0lEdAm1jpeiSJTHV9lChoBkdAb4cntv4ub2gHTQgBaAhHQJtZRcAzYVZ1fZQoaAZHQHE2Tm8ujAVoB0vXaAhHQJtZnR2KVIJ1fZQoaAZHQHFeSL61stVoB00RAWgIR0CbWli3ocJddX2UKGgGR0Ax0OT7l7tzaAdLsGgIR0CbXW/4qPOqdX2UKGgGR0Bu6z2rXDm9aAdL6WgIR0Cbxh1uzhP1dX2UKGgGR0BwHzYvnKW+aAdL6mgIR0CbxkNnoPkJdX2UKGgGR0BwyA+4b0e2aAdNYwFoCEdAm8bj2OAAhnV9lChoBkdAcQP6QeV9nmgHS9ZoCEdAm8cDspoboHV9lChoBkdAcGmq//NqxmgHS/JoCEdAm8iFZ9uxbHV9lChoBkdAbQ4ZR8+iamgHTRMCaAhHQJvIqSNfgJl1fZQoaAZHQHAHL39JjDtoB0vlaAhHQJvJgRHww0x1fZQoaAZHQGNLBr30wrVoB03oA2gIR0Cby55JK8L8dX2UKGgGR0Bd1Yzi0fHQaAdN6ANoCEdAm8vCs4ku6HV9lChoBkdAc6Z0SAYpD2gHTSYBaAhHQJvMP7yhBZ91fZQoaAZHQGGfNthuwX9oB03oA2gIR0CbzfWkJrtWdX2UKGgGR0BuszTDwYtQaAdNOQFoCEdAm85eBQN1AHV9lChoBkdAcpv8gpz90mgHTWcBaAhHQJvPpbX6InB1fZQoaAZHQHGN4bCJoCdoB0vuaAhHQJvSzPE87p51fZQoaAZHQHGI5ggHNX5oB0v2aAhHQJvTQzabnYB1fZQoaAZHQG9WOCf6Gg1oB0vwaAhHQJvTiqWC2+h1fZQoaAZHQG/Sd7WuoxZoB0v3aAhHQJvT8NDtw711fZQoaAZHQG5ynaFmFrVoB0vnaAhHQJvUrE5yU9p1fZQoaAZHQFsH8OCoS+RoB03oA2gIR0Cb1OrX18LKdX2UKGgGR0BwV1iAlOXWaAdL82gIR0Cb1eO7g88tdX2UKGgGR0BzK6vNeMQ3aAdL8mgIR0Cb2EXeFcptdX2UKGgGR0ByMGJaaCtjaAdNAQFoCEdAm9h/SH/LknV9lChoBkdAYs6bG3nZCmgHTegDaAhHQJvZV6dDpkh1fZQoaAZHQHCUrnkkrwxoB0vzaAhHQJvZ/5AQg9x1fZQoaAZHQHFW7J8v25BoB0vwaAhHQJvaRE8aGYd1fZQoaAZHQG+NT/IbOu9oB006AWgIR0Cb2rjbzshQdX2UKGgGR0Bu7+/k/8l5aAdNpwFoCEdAm9xt9Dx9X3V9lChoBkdAcAv3evZAZGgHS9BoCEdAm9yL7bcoIHV9lChoBkdAcKRdgv114mgHS91oCEdAm9y1v2oNu3V9lChoBkdAb7wH/Lkjo2gHS/FoCEdAm90yo86mwnV9lChoBkdAb7LFjurp7mgHTQABaAhHQJvdXr4WUKR1fZQoaAZHQHBblX3g1m9oB0vgaAhHQJvduxB3Roh1fZQoaAZHQG5rcTrVvuRoB0vwaAhHQJvecppeu3d1fZQoaAZHQHHeqAavRqpoB01aAWgIR0Cb32K0UoKEdX2UKGgGR0Bsx+uvECNkaAdL9GgIR0Cb4seEqUeNdX2UKGgGR0Bxq6ntOVPfaAdL/WgIR0Cb5YZM+NcXdX2UKGgGR0BDagRbr1M/aAdLvGgIR0Cb5ZxffGdadX2UKGgGR0BwoXKmsNlRaAdNCwFoCEdAm+eBLTQVsXV9lChoBkdAbOaYhMajvmgHS+poCEdAm+lghbGFSXV9lChoBkdAbbcfbKzRhWgHS+NoCEdAm+nj0Yj0MHV9lChoBkdAcRlchTwUg2gHTQQBaAhHQJvp7HCGetl1fZQoaAZHQHCZvpIMBp5oB00BAWgIR0Cb6v6oESuhdX2UKGgGR0BwzUEOiFj/aAdNtgFoCEdAm+r1WbPQfXV9lChoBkdAcF+8x9G7SWgHTT8DaAhHQJvrcYNy5qd1fZQoaAZHQHG1Snk1dgRoB00TAWgIR0Cb7bYKIBRydX2UKGgGR0BwhoUoKD02aAdL7WgIR0Cb8CkpZwGXdX2UKGgGR0Bti16w+t8vaAdL6mgIR0Cb8lSyMUAUdX2UKGgGR0BuKcI/qxC6aAdL6GgIR0Cb9hzcRDkVdX2UKGgGR0BxbsVKwpvxaAdL+GgIR0Cb9n6tDD0ldX2UKGgGR0Btsjz7MxGlaAdL5GgIR0Cb91IfKZDzdX2UKGgGR0BubIUN8VpLaAdNBQFoCEdAm/iaFdszmHV9lChoBkdAcZyNWU8mr2gHTQoBaAhHQJv46Q2dd3V1fZQoaAZHQHDXYo3Jgb9oB0vsaAhHQJv5/z8P4Eh1fZQoaAZHQG4uOafBeoloB0vfaAhHQJv7z/0dzXB1fZQoaAZHQG9QR4Y77sRoB0viaAhHQJv+dS9/SYx1fZQoaAZHQG8bo3zcynFoB0vdaAhHQJwCX67/XGx1fZQoaAZHQDl/WK/EfkpoB0vCaAhHQJwDZ/mT1TR1fZQoaAZHQHB/4mgJ1JVoB0vjaAhHQJwDl8MNMGp1fZQoaAZHQHC7TJZGKAJoB00DA2gIR0CcBQiqyWzGdX2UKGgGR0BxqqXZ5AyEaAdL1GgIR0CcBXjT8YQ8dX2UKGgGR0Bx6CoWHk92aAdNNQFoCEdAnAbCfQKKHnV9lChoBkdAb/W8an7522gHS+JoCEdAnAgmXgLqlnV9lChoBkdAYeHNW2gFo2gHTegDaAhHQJwMPf+CK791fZQoaAZHQGI6BysCDEpoB03oA2gIR0CcDU987ZFodX2UKGgGR0BcTRp5/smfaAdN6ANoCEdAnA580xdpqXV9lChoBkdAbwzzRx95QmgHS+loCEdAnA/gBYFJQXV9lChoBkdAcVa8p1A7gmgHTQ0BaAhHQJwQwsGxD9h1fZQoaAZHQHCrwAyVObloB0vjaAhHQJwRFkOI68x1fZQoaAZHQGzwhguyu6poB00DAWgIR0CcEVhESdvsdX2UKGgGR0Bvlym0mdAgaAdL5GgIR0CcEYljVhCudX2UKGgGR0BttGhM8HObaAdNHANoCEdAnBIZ0wJw9HV9lChoBkdAb04DLbHp8mgHS9toCEdAnBIphjOLSHV9lChoBkdAblCKrJbMYGgHS9poCEdAnBMcynDR+nV9lChoBkdAYiADRMN+b2gHTegDaAhHQJwUdU1hsqJ1fZQoaAZHQG574HHFPzpoB00TAWgIR0CcGULLIPsidX2UKGgGR0BkAq5/b0voaAdN6ANoCEdAnBo82R7qp3V9lChoBkdAcLYmfGuLaWgHTRIBaAhHQJwae3uuzQh1fZQoaAZHQG+c4fnwG4ZoB00CAWgIR0CcGuwLVnVYdX2UKGgGR0BthdxwQ176aAdL3GgIR0CcHFEdeY2LdX2UKGgGR0BupuJk5IYnaAdL92gIR0CcHV36AOJ+dX2UKGgGR0Bx2cIJJGvwaAdNFQFoCEdAnB232VVxTHV9lChoBkdAcN4zxgAp8WgHS+toCEdAnB4DZpSJj3V9lChoBkdAXP7iIcinpGgHTegDaAhHQJweZmCiAUd1fZQoaAZHQDs+/9Hc1wZoB0u6aAhHQJwetiDujRF1fZQoaAZHQHEkUsjFAFBoB0vcaAhHQJweq08eS0V1fZQoaAZHQHHmh5TqB3BoB00eAWgIR0CcINLjxTbWdX2UKGgGR0Bw6KPZIxxlaAdL5mgIR0CcJ6UxmCiAdX2UKGgGR0ByLCQ8wHqvaAdNugFoCEdAnCf5kK/mDHV9lChoBkdAcQUySFGoaWgHTQMBaAhHQJwo5WFN+LF1fZQoaAZHQHI+KQV9F4NoB00ZAWgIR0CcKTGOuJUHdX2UKGgGR0BvBRnWattAaAdL6mgIR0CcKU20zCUHdX2UKGgGR0BtveT7l7tzaAdNCAFoCEdAnCmXlOoHcHV9lChoBkdAcX+88s+V1WgHS9xoCEdAnCm8AaNuL3V9lChoBkdAcSdqcVgx8GgHS+NoCEdAnCnFyJbdJ3V9lChoBkdAcBY/GEPDpGgHS/toCEdAnCu4LofSyHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |