jeremyarancio
commited on
Commit
•
c8b5fa1
1
Parent(s):
571225f
Add handler and requirements
Browse files- handler.py +48 -0
- requirements.txt +1 -0
handler.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftConfig, PeftModel
|
5 |
+
|
6 |
+
|
7 |
+
class EndpointHandler():
|
8 |
+
def __init__(self, path=""):
|
9 |
+
config = PeftConfig.from_pretrained(path)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
12 |
+
# Load the Lora model
|
13 |
+
self.model = PeftModel.from_pretrained(model, path)
|
14 |
+
|
15 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
16 |
+
"""
|
17 |
+
data args:
|
18 |
+
prompt (:obj:`str`):
|
19 |
+
temperature (:obj:`float`, `optional`, defaults to 0.5):
|
20 |
+
eos_token_id (:obj:`int`, `optional`, defaults to tokenizer.eos_token_id):
|
21 |
+
early_stopping (:obj:`bool`, `optional`, defaults to `True`):
|
22 |
+
repetition_penalty (:obj:`float`, `optional`, defaults to 0.3):
|
23 |
+
Return:
|
24 |
+
A :obj:`str` : generated sequences
|
25 |
+
"""
|
26 |
+
# Get inputs
|
27 |
+
prompt = data.pop("prompt", None)
|
28 |
+
temperature = data.pop("temperature", 0.5)
|
29 |
+
eos_token_id = data.pop("eos_token_id", self.tokenizer.eos_token_id)
|
30 |
+
early_stopping = data.pop('early_stopping', True)
|
31 |
+
repetition_penalty = data.pop('repetition_penalty', 0.3)
|
32 |
+
max_new_tokens = data.pop('max_new_tokens', 100)
|
33 |
+
|
34 |
+
if prompt is None:
|
35 |
+
raise ValueError("No prompt provided.")
|
36 |
+
|
37 |
+
# Run prediction
|
38 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
39 |
+
prediction = self.model.generate(
|
40 |
+
**inputs,
|
41 |
+
temperature=temperature,
|
42 |
+
eos_token_id=eos_token_id,
|
43 |
+
early_stopping=early_stopping,
|
44 |
+
repetition_penalty=repetition_penalty,
|
45 |
+
max_new_tokens=max_new_tokens
|
46 |
+
)
|
47 |
+
|
48 |
+
return prediction
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
peft==0.3.0
|