jeremyarancio
commited on
Commit
•
88e1248
1
Parent(s):
6dec8ee
Update handler
Browse files- README.md +2 -2
- handler.py +8 -9
README.md
CHANGED
@@ -26,10 +26,10 @@ from peft import PeftConfig, PeftModel
|
|
26 |
|
27 |
# Import the model
|
28 |
config = PeftConfig.from_pretrained("JeremyArancio/llm-tolkien")
|
29 |
-
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
|
30 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
31 |
# Load the Lora model
|
32 |
-
model = PeftModel.from_pretrained(model,
|
33 |
```
|
34 |
|
35 |
# Run the model
|
|
|
26 |
|
27 |
# Import the model
|
28 |
config = PeftConfig.from_pretrained("JeremyArancio/llm-tolkien")
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map='auto')
|
30 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
31 |
# Load the Lora model
|
32 |
+
model = PeftModel.from_pretrained(model, "JeremyArancio/llm-tolkien")
|
33 |
```
|
34 |
|
35 |
# Run the model
|
handler.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Dict,
|
2 |
import logging
|
3 |
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
@@ -6,6 +6,7 @@ from peft import PeftConfig, PeftModel
|
|
6 |
|
7 |
|
8 |
LOGGER = logging.getLogger(__name__)
|
|
|
9 |
|
10 |
|
11 |
class EndpointHandler():
|
@@ -16,26 +17,24 @@ class EndpointHandler():
|
|
16 |
# Load the Lora model
|
17 |
self.model = PeftModel.from_pretrained(model, path)
|
18 |
|
19 |
-
def __call__(self, data: Dict[str, Any]) ->
|
20 |
"""
|
21 |
Args:
|
22 |
data (Dict): The payload with the text prompt and generation parameters.
|
23 |
"""
|
24 |
LOGGER.info(f"Received data: {data}")
|
25 |
# Get inputs
|
26 |
-
|
27 |
parameters = data.pop("parameters", None)
|
28 |
-
LOGGER.info("Data extracted.")
|
29 |
# Preprocess
|
30 |
-
|
31 |
-
inputs_ids = self.tokenizer(inputs, return_tensors="pt").inputs_ids
|
32 |
# Forward
|
33 |
LOGGER.info(f"Start generation.")
|
34 |
if parameters is not None:
|
35 |
-
|
36 |
else:
|
37 |
-
|
38 |
# Postprocess
|
39 |
-
prediction = self.tokenizer.decode(
|
40 |
LOGGER.info(f"Generated text: {prediction}")
|
41 |
return {"generated_text": prediction}
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
import logging
|
3 |
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
6 |
|
7 |
|
8 |
LOGGER = logging.getLogger(__name__)
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
|
12 |
class EndpointHandler():
|
|
|
17 |
# Load the Lora model
|
18 |
self.model = PeftModel.from_pretrained(model, path)
|
19 |
|
20 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
21 |
"""
|
22 |
Args:
|
23 |
data (Dict): The payload with the text prompt and generation parameters.
|
24 |
"""
|
25 |
LOGGER.info(f"Received data: {data}")
|
26 |
# Get inputs
|
27 |
+
prompt = data.pop("prompt", data)
|
28 |
parameters = data.pop("parameters", None)
|
|
|
29 |
# Preprocess
|
30 |
+
input = self.tokenizer(prompt, return_tensors="pt")
|
|
|
31 |
# Forward
|
32 |
LOGGER.info(f"Start generation.")
|
33 |
if parameters is not None:
|
34 |
+
output = self.model.generate(**input, **parameters)
|
35 |
else:
|
36 |
+
output = self.model.generate(**input)
|
37 |
# Postprocess
|
38 |
+
prediction = self.tokenizer.decode(output[0])
|
39 |
LOGGER.info(f"Generated text: {prediction}")
|
40 |
return {"generated_text": prediction}
|