|
|
|
|
|
import re |
|
|
from typing import Dict, List |
|
|
|
|
|
def _compile(patterns: List[str], flags=re.IGNORECASE): |
|
|
return [re.compile(p, flags=flags) for p in patterns] |
|
|
|
|
|
def _any_match(text: str, regs) -> bool: |
|
|
return any(r.search(text) for r in regs) |
|
|
|
|
|
|
|
|
_COMPARATIVE = _compile([ |
|
|
r"\bcompared\s+to\b", |
|
|
r"\bcompared\s+with\b", |
|
|
r"\bversus\b", |
|
|
r"\bvs\.?\b", |
|
|
r"\bfrom\s+[-+]?\d+(?:\.\d+)?\s*(?:%|percent|percentage|[A-Za-z]+)?\s+to\s+[-+]?\d+(?:\.\d+)?\s*(?:%|percent|percentage|[A-Za-z]+)?\b", |
|
|
r"\bfrom\s+[A-Za-z0-9\.,%-]+\s+to\s+[A-Za-z0-9\.,%-]+\b", |
|
|
]) |
|
|
|
|
|
_LOSS_IMPROVE = _compile([ |
|
|
r"\bloss(?:es)?\s+(?:narrowed|shr[aou]nk|decreased|fell|reduced)\b", |
|
|
r"\bturn(?:ed)?\s+to\s+(?:profit|black)\b", |
|
|
]) |
|
|
_LOSS_WORSEN = _compile([ |
|
|
r"\bloss(?:es)?\s+(?:widened|grew|increased|rose|deepened)\b", |
|
|
r"\bturn(?:ed)?\s+to\s+(?:loss|red)\b", |
|
|
]) |
|
|
|
|
|
_PROFIT_UP = _compile([ |
|
|
r"\b(profit|profits|net\s+income|earnings|ebit|ebitda|eps|roe|roi|return(?:s)?(?:\s+on\s+equity)?)\b.*\b(rose|grew|increased|up|higher|improved|jumped|surged|soared)\b", |
|
|
r"\b(rose|grew|increased|up|higher|improved|jumped|surged|soared)\b.*\b(profit|profits|net\s+income|earnings|ebit|ebitda|eps|roe|roi|return(?:s)?(?:\s+on\s+equity)?)\b", |
|
|
]) |
|
|
|
|
|
_COST_DOWN = _compile([ |
|
|
r"\b(cost|costs|expenses|opex|operating\s+expense(?:s)?)\b.*\b(fell|declined|decreased|lower|reduced|down)\b", |
|
|
r"\b(fell|declined|decreased|lower|reduced|down)\b.*\b(cost|costs|expenses|opex|operating\s+expense(?:s)?)\b", |
|
|
]) |
|
|
|
|
|
_CONTRACT_FIN = _compile([ |
|
|
r"\b(agreement|deal|contract|order|purchase\s+order|framework\s+agreement)\b", |
|
|
r"\b(bond|notes?|debenture|convertible|placement|issuance|issue|offering|ipo|follow-?on)\b", |
|
|
r"\b(loan|credit\s+facility|credit\s+line|revolver|revolving\s+credit|financing)\b", |
|
|
]) |
|
|
|
|
|
_UNCERTAIN = _compile([ |
|
|
r"\b(uncertain|uncertainty|cannot\s+be\s+determined|not\s+clear|unknown|unpredictable)\b", |
|
|
r"\b(impairment|write-?down|one-?off|exceptional\s+(?:item|charge)|non-?recurring)\b", |
|
|
r"\b(outlook\s+(?:uncertain|cloudy|cautious))\b", |
|
|
]) |
|
|
|
|
|
_STABLE_GUIDE = _compile([ |
|
|
r"\b(expects?|expected|expects\s+to|guidance|forecast|outlook)\b.*\b(remain(?:s|ed|ing)?\s+(?:stable|unchanged)|in[-\s]?line)\b", |
|
|
r"\b(reiterated|maintained)\s+(?:its\s+)?(guidance|forecast|outlook)\b", |
|
|
]) |
|
|
|
|
|
_OPERATIONAL = _compile([ |
|
|
r"\b(restructuring|reorganization|spin-?off|divest(?:iture)?|asset\s+sale)\b", |
|
|
r"\b(ban|suspension|halted|blocked|prohibited)\b", |
|
|
r"\b(recall|probe|investigation|lawsuit|litigation|settlement)\b", |
|
|
r"\b(layoffs?|headcount\s+reduction|cut\s+jobs|hiring\s+freeze)\b", |
|
|
]) |
|
|
|
|
|
def extract_semantic_flags(text: str) -> Dict[str, int]: |
|
|
t = text.strip().lower() |
|
|
|
|
|
flags = { |
|
|
"sem_compared": int(_any_match(t, _COMPARATIVE)), |
|
|
"sem_loss_improve": int(_any_match(t, _LOSS_IMPROVE)), |
|
|
"sem_loss_worsen": int(_any_match(t, _LOSS_WORSEN)), |
|
|
"sem_profit_up": int(_any_match(t, _PROFIT_UP)), |
|
|
"sem_cost_down": int(_any_match(t, _COST_DOWN)), |
|
|
"sem_contract_fin": int(_any_match(t, _CONTRACT_FIN)), |
|
|
"sem_uncertainty": int(_any_match(t, _UNCERTAIN)), |
|
|
"sem_stable_guidance":int(_any_match(t, _STABLE_GUIDE)), |
|
|
"sem_operational": int(_any_match(t, _OPERATIONAL)), |
|
|
} |
|
|
return flags |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse, pandas as pd |
|
|
from pathlib import Path |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Extract Structured Financial Semantics from FPB text file.") |
|
|
parser.add_argument("--input", required=True, help="Path to Sentences_*.txt or a CSV with text column.") |
|
|
parser.add_argument("--out", required=True, help="Output CSV path.") |
|
|
parser.add_argument("--text_col", default="sentence", help="Column name if input is CSV.") |
|
|
args = parser.parse_args() |
|
|
|
|
|
def parse_fpb_line(line): |
|
|
if "@positive" in line: |
|
|
return line.rsplit("@positive", 1)[0].strip(), "positive" |
|
|
elif "@negative" in line: |
|
|
return line.rsplit("@negative", 1)[0].strip(), "negative" |
|
|
elif "@neutral" in line: |
|
|
return line.rsplit("@neutral", 1)[0].strip(), "neutral" |
|
|
else: |
|
|
return line.strip(), "" |
|
|
|
|
|
path = Path(args.input) |
|
|
rows = [] |
|
|
if path.suffix.lower() == ".txt": |
|
|
with open(path, "r", encoding="utf-8", errors="ignore") as f: |
|
|
for i, line in enumerate(f): |
|
|
text, label = parse_fpb_line(line) |
|
|
if text: |
|
|
rows.append({"id": i, args.text_col: text, "label": label}) |
|
|
df = pd.DataFrame(rows) |
|
|
else: |
|
|
df = pd.read_csv(path) |
|
|
|
|
|
|
|
|
df_feats = df[args.text_col].astype(str).apply(extract_semantic_flags).apply(pd.Series) |
|
|
df_out = pd.concat([df, df_feats], axis=1) |
|
|
df_out.to_csv(args.out, index=False) |
|
|
print(f"Saved structured semantics to: {args.out}") |
|
|
print("Columns:", [c for c in df_out.columns if c.startswith('sem_')]) |