jegormeister commited on
Commit
d507d8d
1 Parent(s): 0b9b526

Retrain the model using Pyjay/bert-base-dutch-cased-finetuned-gv as base

Browse files
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 256,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -9,7 +9,7 @@ tags:
9
 
10
  # bert-base-dutch-cased-snli
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
@@ -74,7 +74,7 @@ print(sentence_embeddings)
74
 
75
  ## Evaluation Results
76
 
77
- Top-5 accuracy: 72%
78
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli)
80
 
@@ -84,7 +84,7 @@ The model was trained with the parameters:
84
 
85
  **DataLoader**:
86
 
87
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4209 with parameters:
88
  ```
89
  {'batch_size': 64}
90
  ```
@@ -102,15 +102,15 @@ Parameters of the fit()-Method:
102
  "callback": null,
103
  "epochs": 1,
104
  "evaluation_steps": 0,
105
- "evaluator": "__main__.SnliEvaluator",
106
  "max_grad_norm": 1,
107
  "optimizer_class": "<class 'transformers.optimization.AdamW'>",
108
  "optimizer_params": {
109
- "lr": 3e-05
110
  },
111
  "scheduler": "WarmupLinear",
112
  "steps_per_epoch": null,
113
- "warmup_steps": 842,
114
  "weight_decay": 0.01
115
  }
116
  ```
@@ -120,7 +120,7 @@ Parameters of the fit()-Method:
120
  ```
121
  SentenceTransformer(
122
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
123
- (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
  )
125
  ```
126
 
 
9
 
10
  # bert-base-dutch-cased-snli
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
 
74
 
75
  ## Evaluation Results
76
 
77
+ <!--- Describe how your model was evaluated -->
78
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli)
80
 
 
84
 
85
  **DataLoader**:
86
 
87
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4807 with parameters:
88
  ```
89
  {'batch_size': 64}
90
  ```
 
102
  "callback": null,
103
  "epochs": 1,
104
  "evaluation_steps": 0,
105
+ "evaluator": "utils.CombEvaluator",
106
  "max_grad_norm": 1,
107
  "optimizer_class": "<class 'transformers.optimization.AdamW'>",
108
  "optimizer_params": {
109
+ "lr": 1e-05
110
  },
111
  "scheduler": "WarmupLinear",
112
  "steps_per_epoch": null,
113
+ "warmup_steps": 722,
114
  "weight_decay": 0.01
115
  }
116
  ```
 
120
  ```
121
  SentenceTransformer(
122
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
  )
125
  ```
126
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "GroNLP/bert-base-dutch-cased",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/Pyjay_bert-base-dutch-cased-finetuned-gv",
3
  "architectures": [
4
  "BertModel"
5
  ],
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5c8d40bc37b065dd12dd79b03a24f96971575e494f1fee1dbb12c9b488a45600
3
  size 436630961
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:467a864255f450ec54064914dd0dbacf2b46137ccda32990cc5c124f88df32bf
3
  size 436630961
tokenizer_config.json CHANGED
@@ -1 +1 @@
1
- {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "/root/.cache/huggingface/transformers/adb82a117c09b0f8768357de8e836a9e0610730782f82edc49dd0020c48f1d03.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "GroNLP/bert-base-dutch-cased", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "/root/.cache/huggingface/transformers/adb82a117c09b0f8768357de8e836a9e0610730782f82edc49dd0020c48f1d03.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "/root/.cache/torch/sentence_transformers/Pyjay_bert-base-dutch-cased-finetuned-gv", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}