jeffrey82221 commited on
Commit
a52b011
1 Parent(s): 4a85ac3

epoch=4: train_epoch_loss.item()=5.126230551155686e-09 eval_epoch_loss.item()=7.991040051891218e-10{"valid_regex_ratio": 0.0}

Browse files
Files changed (3) hide show
  1. README.md +7 -1
  2. adapter_config.json +16 -0
  3. adapter_model.bin +3 -0
README.md CHANGED
@@ -1,3 +1,9 @@
1
  ---
2
- license: apache-2.0
3
  ---
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
  ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
adapter_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "Salesforce/codegen-350M-mono",
4
+ "inference_mode": true,
5
+ "num_attention_heads": 16,
6
+ "num_layers": 20,
7
+ "num_transformer_submodules": 1,
8
+ "num_virtual_tokens": 8,
9
+ "peft_type": "PROMPT_TUNING",
10
+ "prompt_tuning_init": "TEXT",
11
+ "prompt_tuning_init_text": "Infer regex that full match the patterns provided. \nNote that:\n1. Each pattern is provided in a new line.\n2. The resulting regex should be wrapped in double quote.\n3. After the resulting regex is presented, the remaining explaination should be provided in a new line.\n\nFor example:\n\nThe patterns are:\n\"1\"\n\"2\"\n\"3\"\nThe regex is:\n\"[1-3]\"\nbecause the patterns are 1~3.\n\nNow start the real inference process:\n ",
12
+ "revision": null,
13
+ "task_type": "CAUSAL_LM",
14
+ "token_dim": 1024,
15
+ "tokenizer_name_or_path": "Salesforce/codegen-350M-mono"
16
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57962ac045872bcb9cc9e97e46be8fda00cda28412dfda82966eb1fc61dea077
3
+ size 34042