{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79f6e04476d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79f6e0447760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79f6e04477f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79f6e0447880>", "_build": "<function ActorCriticPolicy._build at 0x79f6e0447910>", "forward": "<function ActorCriticPolicy.forward at 0x79f6e04479a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79f6e0447a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79f6e0447ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x79f6e0447b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79f6e0447be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79f6e0447c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79f6e0447d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f6e05e76c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718918535398236102, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALqEH75yTjI/BTXNPMoJo74U5lW9+3+MPQAAAAAAAAAAM2+xuyjz0bwOkV+8QdxjPVgvYL24JxW7AACAPwAAgD+ao9e8j65VujXR9jqBUp00LWDXunhkmzMAAIA/AACAP42Kjr0/ZjU/IwRxvZNBp74YOqa9ZUR+PQAAAAAAAAAAc0aTvdL7u7tkuY08DXOPPOqSJD317HK9AACAPwAAgD8Ap+e8cLWiPz63Gb53jLW+UJh8Oj7pEr0AAAAAAAAAAIYVJz4fDiU/nXzyvaNXiL66YYw90aSrvQAAAAAAAAAADSOFvXJgaz+Q0V09DyPLvi2fib066Ho9AAAAAAAAAAAzysW8SPOrupJEpjvLtQY44vg6OXO0frYAAIA/AACAP035mb1Yd4I9/i6oPB3SBb6sNk+95NWWPAAAAAAAAAAAM6ygvY+uaroCxK63ZruosmEQuLq+ycw2AAAAAAAAgD8mg5u9wz1bumXDWDiZhgq1821zO70PeLcAAAAAAACAP+r0rz5JsQY/+pGyvrW/Z75D4sw9xVgrvgAAAAAAAAAAWh1EPuqXpD+ixYM+BU+OvukSbj65bcK8AAAAAAAAAAAtg1O+Vc8pP3XOgLzWIaa+O26wvUikSj0AAAAAAAAAAM20Ur1cy0y6cs+btTPP2C7rPYy6HcmvNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLbnFYMfA+MAWyUTegDjAF0lEdAlJW8iwB5o3V9lChoBkdAYGpo2XLNfWgHTegDaAhHQJSX2EFnqV11fZQoaAZHQGTC+i8FpwloB03oA2gIR0CUmPDGtITXdX2UKGgGR0Bi13aN+9amaAdN6ANoCEdAlJpn6uW8iHV9lChoBkdAcgfNVzZHu2gHTdgDaAhHQJScTrjYI0J1fZQoaAZHQGTcC1Aqur9oB03oA2gIR0CUpBtO2y9mdX2UKGgGR0Bhi2BBiTdMaAdN6ANoCEdAlKUw2Ifr8nV9lChoBkdAS215dGAkLWgHS/toCEdAlKY9Fa0Qb3V9lChoBkdAZk/aX8fmtGgHTegDaAhHQJSppC5VfeF1fZQoaAZHQGQFtI065oZoB03oA2gIR0CUq/17pmmMdX2UKGgGR0BlMsVxjriVaAdN6ANoCEdAlKy+ZLIxQHV9lChoBkdAY/A7pV0cO2gHTegDaAhHQJSueTxG2Cx1fZQoaAZHQF1e4Pf8/EBoB03oA2gIR0CUsEkAPuohdX2UKGgGR0Bx8+L3sXzlaAdNFANoCEdAlL1fYjB2wHV9lChoBkdAWHybnX/YJ2gHTegDaAhHQJS/PDye7MB1fZQoaAZHQGIm+tSydFxoB03oA2gIR0CUwFDFZPl/dX2UKGgGR0BlfJbQkX1raAdN6ANoCEdAlMFnrMTviXV9lChoBkdAYVFE4vN/v2gHTegDaAhHQJTRA9ovi991fZQoaAZHQGVpKIznA7BoB03oA2gIR0CU5ah3aBZqdX2UKGgGR0BwFzIyTINmaAdNawFoCEdAlOgTXjENv3V9lChoBkdAZAhPbfxc3WgHTegDaAhHQJTpfUI9kjJ1fZQoaAZHQF2RHRTjvNNoB03oA2gIR0CU7ECDmKZVdX2UKGgGR0Bt5MSuhbnpaAdNvgNoCEdAlPLpvLowEnV9lChoBkc/72OQyRB/qmgHTQYBaAhHQJT0ptl7MPl1fZQoaAZHQHBYA2606YFoB00gAmgIR0CU9Mtv4ubrdX2UKGgGR0Bgx/TG5tm+aAdN6ANoCEdAlPXbM5fdAXV9lChoBkdAaDYvPkaMrGgHTegDaAhHQJT2sOVgQYl1fZQoaAZHQHGAsN6PbPBoB013A2gIR0CU9xjYI0IkdX2UKGgGR0BgSI2ycCo1aAdN6ANoCEdAlPlXcpLEk3V9lChoBkdAY8tDZUT+N2gHTegDaAhHQJT7W72+PBB1fZQoaAZHQGP03qqwQlNoB03oA2gIR0CU/Y4tYjjadX2UKGgGR0BeGBtgrpaBaAdN6ANoCEdAlP9EFr2xp3V9lChoBkdAUeeBH09QoGgHS/doCEdAlQDjCtRvWHV9lChoBkdAb+cH3UQTVWgHTQcCaAhHQJUGtrTH80l1fZQoaAZHQGFQDlxOtXBoB03oA2gIR0CVCJB3A2ycdX2UKGgGR0Bkg0GzKLbYaAdN6ANoCEdAlQylYMfA9HV9lChoBkdAbtygXdj5K2gHTYYBaAhHQJUOAZFXq7l1fZQoaAZHQFAFZqEeyRloB0vraAhHQJUVjViF0xN1fZQoaAZHQHEBFsP8Q7NoB02GA2gIR0CVHuVYZEUkdX2UKGgGR0Bld7DwYtQLaAdN6ANoCEdAlTVZOFg2InV9lChoBkdAcTgsBQvYe2gHTUkCaAhHQJU2MsRQJol1fZQoaAZHQGXTLvsqriloB03oA2gIR0CVNxqS5iEydX2UKGgGR0ByMm5UcXFcaAdN+wJoCEdAlTfc41gpjXV9lChoBkdAcGt6MBIWg2gHTWMBaAhHQJU4saya/h51fZQoaAZHQGQsS2hIvrZoB03oA2gIR0CVP7V5rxiHdX2UKGgGR0Bx7alqJuVHaAdNQAJoCEdAlUDrVz6rNnV9lChoBkdAZriv7FbV0GgHTegDaAhHQJVBkQkHD791fZQoaAZHQGCYZV4oqkNoB03oA2gIR0CVQbPsAvL6dX2UKGgGR0Bf2bNW2gFpaAdN6ANoCEdAlUOcyeqaPXV9lChoBkdAYaH9n9NvfmgHTegDaAhHQJVJBgeA/cF1fZQoaAZHQG97E690zTFoB02JAWgIR0CVSlU2DQJHdX2UKGgGR0BuldWU8mrsaAdNpQNoCEdAlUtn18LKFXV9lChoBkdAcdJh86V+qmgHTYMBaAhHQJVMBzV+Zw51fZQoaAZHQGONYJu2qkxoB03oA2gIR0CVTOlKsdT6dX2UKGgGR0BwE7AymALBaAdNEQJoCEdAlVNVrEcbSHV9lChoBkdAcKNiXY150WgHTYgBaAhHQJVWevLX+VF1fZQoaAZHQF9dLpA2Q4loB03oA2gIR0CVXK/4qPOqdX2UKGgGR0BygQp6QeV+aAdNjgFoCEdAlV+YVdonKHV9lChoBkdAZaNBsQ/X5GgHTegDaAhHQJVjF7KJVKh1fZQoaAZHQG4NzPa+N99oB02kAmgIR0CVZIkjHGS7dX2UKGgGR0BwCpeiSJTEaAdN1wJoCEdAlWh1Z1V5r3V9lChoBkdAYhXySV4X42gHTegDaAhHQJVpDfMwDeV1fZQoaAZHQHFIBVp9JBhoB01gAWgIR0CVahFR51NhdX2UKGgGR0Bmgz2g3974aAdN6ANoCEdAlWtX40uUU3V9lChoBkdAcA+jIJZ4fWgHTTsCaAhHQJVrblQuVX51fZQoaAZHQGbWIf0VafVoB03oA2gIR0CVfnIV/MGHdX2UKGgGR0BsnDSw4bS7aAdNXAJoCEdAlX9Bc/t6X3V9lChoBkdAbXZNSIgvDmgHTXwCaAhHQJWBdgWrOqx1fZQoaAZHQHHoMNpdrwhoB02EA2gIR0CVgqDqW1MNdX2UKGgGR0BsceAEt/WlaAdNcgJoCEdAlYc70aqCH3V9lChoBkdAcdAq59Vmz2gHTacBaAhHQJWLnpmmLtN1fZQoaAZHQG4qbVSXMQpoB02TAWgIR0CVjAWIoE0SdX2UKGgGR0BimLmhdt2taAdN6ANoCEdAlYwo7muDBnV9lChoBkdAcT7wfQrtmmgHTQ4CaAhHQJWOJDArQPZ1fZQoaAZHQGsvqCpWFOBoB02PA2gIR0CVjwPxx1gZdX2UKGgGR0BxOZMSK3uvaAdNpwFoCEdAlZEC+UQkHHV9lChoBkdAbgSkN4JNTWgHTbsBaAhHQJWSk8Rtgrp1fZQoaAZHQHD1O717IDJoB02VAWgIR0CVkynTAnD0dX2UKGgGR0BsMsR15jYqaAdNrQJoCEdAlZNIW1twaXV9lChoBkdAcQjzbN8mbGgHTaQBaAhHQJWTrLW7OFB1fZQoaAZHQHB005IYm9hoB02oAWgIR0CVl+sKb8WLdX2UKGgGR0Bw8rAeq7yyaAdNPAFoCEdAlZrmDtgKGHV9lChoBkdAb7xssxwhn2gHTY4CaAhHQJWc3HaN+9d1fZQoaAZHQHGXXRgJC0FoB03KAWgIR0CVnmtMfzSUdX2UKGgGR0Bx931g6U7kaAdNcwJoCEdAlZ9TIzWPLnV9lChoBkdAcTrdUKiPAGgHTZwBaAhHQJWfkYP5HmR1fZQoaAZHQG89hzFMqSZoB02hAWgIR0CVoWkI5YHPdX2UKGgGR0BuHIvi97F9aAdNNwFoCEdAlaHcvRJEpnV9lChoBkdAcxlBCUornWgHTVUBaAhHQJWijyoXKr91fZQoaAZHQHHnH9zfaYhoB02uAWgIR0CVoo59Vmz0dX2UKGgGR0ByND0+TvAoaAdNJAFoCEdAlaVE1VHWjHV9lChoBkdAcW5fjjrAxmgHTdsBaAhHQJWmGcSXdCV1fZQoaAZHQEfUcFQl8gJoB00IAWgIR0CVqZHp8neBdX2UKGgGR0BwwsJ9iMHbaAdNCwJoCEdAlaodbPhQ33V9lChoBkdAcJX1MM7U5WgHTaYCaAhHQJWqdqCYkVx1fZQoaAZHQE816rNnoPloB0vhaAhHQJWqoPMB6rx1fZQoaAZHQHD0es5n14BoB01OAWgIR0CVqxktVaOhdX2UKGgGR0BxsMl3Qla9aAdNMQFoCEdAlawAmeDnNnV9lChoBkdAcgviLVFx42gHTZABaAhHQJWsDPHDJlt1fZQoaAZHQGYot5MURFtoB03oA2gIR0CVrXlOoHcDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |