Initial2 commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- PandaReachDense-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: A2C
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: PandaReachDense-v2
|
| 16 |
+
type: PandaReachDense-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -1.59 +/- 1.55
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
| 25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b0aec49fcb27d88aca0b7791abd35166c96c4c170e7233a259b86089caaa6a5
|
| 3 |
+
size 107789
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f93c0089af0>",
|
| 8 |
+
"__abstractmethods__": "frozenset()",
|
| 9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f93c008dbc0>"
|
| 10 |
+
},
|
| 11 |
+
"verbose": 1,
|
| 12 |
+
"policy_kwargs": {
|
| 13 |
+
":type:": "<class 'dict'>",
|
| 14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
| 15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
| 16 |
+
"optimizer_kwargs": {
|
| 17 |
+
"alpha": 0.99,
|
| 18 |
+
"eps": 1e-05,
|
| 19 |
+
"weight_decay": 0
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
+
"num_timesteps": 500000,
|
| 23 |
+
"_total_timesteps": 500000,
|
| 24 |
+
"_num_timesteps_at_start": 0,
|
| 25 |
+
"seed": null,
|
| 26 |
+
"action_noise": null,
|
| 27 |
+
"start_time": 1682535485272906353,
|
| 28 |
+
"learning_rate": 0.0007,
|
| 29 |
+
"tensorboard_log": null,
|
| 30 |
+
"lr_schedule": {
|
| 31 |
+
":type:": "<class 'function'>",
|
| 32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 33 |
+
},
|
| 34 |
+
"_last_obs": {
|
| 35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnh3JPq5pnjs69gk/nh3JPq5pnjs69gk/nh3JPq5pnjs69gk/nh3JPq5pnjs69gk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9qnMPXoya77pj4S/+7XCvT0Sqz+525o/LuFCP5aE/j6qxZq/mrACPhp8xr9Fd40/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACeHck+rmmeOzr2CT8Rs846vSpXumb29DueHck+rmmeOzr2CT8Rs846vSpXumb29DueHck+rmmeOzr2CT8Rs846vSpXumb29DueHck+rmmeOzr2CT8Rs846vSpXumb29DuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 37 |
+
"achieved_goal": "[[0.3928041 0.00483438 0.53891337]\n [0.3928041 0.00483438 0.53891337]\n [0.3928041 0.00483438 0.53891337]\n [0.3928041 0.00483438 0.53891337]]",
|
| 38 |
+
"desired_goal": "[[ 0.09993355 -0.22968474 -1.0356418 ]\n [-0.09507366 1.3364941 1.2098304 ]\n [ 0.76124847 0.4971053 -1.2091572 ]\n [ 0.1276268 -1.5506623 1.1052023 ]]",
|
| 39 |
+
"observation": "[[ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]\n [ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]\n [ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]\n [ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]]"
|
| 40 |
+
},
|
| 41 |
+
"_last_episode_starts": {
|
| 42 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
| 44 |
+
},
|
| 45 |
+
"_last_original_obs": {
|
| 46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzDPBvULXMj0smZg+XWouvY3Zab3/Izc+P1LUvUt9NTtyQw8+fe8LvsKc9jxx+i0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
| 49 |
+
"desired_goal": "[[-0.09433708 0.04366232 0.2980436 ]\n [-0.0425819 -0.05709224 0.17884825]\n [-0.1036725 0.00276931 0.13990572]\n [-0.13665576 0.03010404 0.16990067]]",
|
| 50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
| 51 |
+
},
|
| 52 |
+
"_episode_num": 0,
|
| 53 |
+
"use_sde": false,
|
| 54 |
+
"sde_sample_freq": -1,
|
| 55 |
+
"_current_progress_remaining": 0.0,
|
| 56 |
+
"_stats_window_size": 100,
|
| 57 |
+
"ep_info_buffer": {
|
| 58 |
+
":type:": "<class 'collections.deque'>",
|
| 59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAdvBiH0C+L+UhpRSlIwBbJRLMowBdJRHQJ++Jv99+gF1fZQoaAZoCWgPQwguAI3SpX/fv5SGlFKUaBVLMmgWR0CfvOJqZc9odX2UKGgGaAloD0MIyy4YXHPH+b+UhpRSlGgVSzJoFkdAn7s+CCjDbnV9lChoBmgJaA9DCGCwG7YtivG/lIaUUpRoFUsyaBZHQJ+5xt52Qnx1fZQoaAZoCWgPQwjbFI+LapHnv5SGlFKUaBVLMmgWR0CfwKyYG+sYdX2UKGgGaAloD0MIP5C8cyjDAMCUhpRSlGgVSzJoFkdAn79n+2mYSnV9lChoBmgJaA9DCHy6umOxTei/lIaUUpRoFUsyaBZHQJ+9wywfQrt1fZQoaAZoCWgPQwiVKeYg6Cj0v5SGlFKUaBVLMmgWR0CfvEuLJjlQdX2UKGgGaAloD0MIg4b+CS5W8r+UhpRSlGgVSzJoFkdAn8NYK2KEWnV9lChoBmgJaA9DCB2Txf1HpvS/lIaUUpRoFUsyaBZHQJ/CE2sJY1Z1fZQoaAZoCWgPQwggls0cklr6v5SGlFKUaBVLMmgWR0CfwG7PY4ACdX2UKGgGaAloD0MIUB2rlJ4p9b+UhpRSlGgVSzJoFkdAn773e7+T/3V9lChoBmgJaA9DCM1Xycfugue/lIaUUpRoFUsyaBZHQJ/GAcS5AhV1fZQoaAZoCWgPQwgotRfRdkz9v5SGlFKUaBVLMmgWR0CfxL0k4WDZdX2UKGgGaAloD0MImNpSB3l9/L+UhpRSlGgVSzJoFkdAn8MZMg2ZRnV9lChoBmgJaA9DCJn1Yign2gHAlIaUUpRoFUsyaBZHQJ/Bot+TeO51fZQoaAZoCWgPQwjnjZPCvAf5v5SGlFKUaBVLMmgWR0CfyS+OfdyldX2UKGgGaAloD0MIzSIUW0ETA8CUhpRSlGgVSzJoFkdAn8fsSf16FHV9lChoBmgJaA9DCC6p2m6CjwLAlIaUUpRoFUsyaBZHQJ/GSYSg5BF1fZQoaAZoCWgPQwiSI52BkRfxv5SGlFKUaBVLMmgWR0CfxNRfnfVJdX2UKGgGaAloD0MIOh4zUBl/4r+UhpRSlGgVSzJoFkdAn821iSaEz3V9lChoBmgJaA9DCCDPLt/68PG/lIaUUpRoFUsyaBZHQJ/McxZdOZd1fZQoaAZoCWgPQwiR7ucU5Gfqv5SGlFKUaBVLMmgWR0CfytDfFaStdX2UKGgGaAloD0MIhEvHnGfsAsCUhpRSlGgVSzJoFkdAn8lglByCF3V9lChoBmgJaA9DCB3k9WBSfN2/lIaUUpRoFUsyaBZHQJ/SWuoxYaJ1fZQoaAZoCWgPQwhwXpz4aicHwJSGlFKUaBVLMmgWR0Cf0Rllbu+idX2UKGgGaAloD0MIK9uHvOUKC8CUhpRSlGgVSzJoFkdAn893dweeWnV9lChoBmgJaA9DCH4BvXDngve/lIaUUpRoFUsyaBZHQJ/OAfbKzRh1fZQoaAZoCWgPQwg1Bwjm6FEPwJSGlFKUaBVLMmgWR0Cf1w0CzTnadX2UKGgGaAloD0MI1IBB0qcV8b+UhpRSlGgVSzJoFkdAn9XKxPfsNXV9lChoBmgJaA9DCIofY+5awv2/lIaUUpRoFUsyaBZHQJ/UKJxeb/h1fZQoaAZoCWgPQwibkNYYdALzv5SGlFKUaBVLMmgWR0Cf0rQqI7/5dX2UKGgGaAloD0MIgEQTKGLR97+UhpRSlGgVSzJoFkdAn9x+N96Tn3V9lChoBmgJaA9DCGFu93KfHO+/lIaUUpRoFUsyaBZHQJ/bP5nDiwV1fZQoaAZoCWgPQwgpyxDHuvjyv5SGlFKUaBVLMmgWR0Cf2Z2tdRixdX2UKGgGaAloD0MInKVkOQml8L+UhpRSlGgVSzJoFkdAn9gouscQy3V9lChoBmgJaA9DCDnVWpiFVgTAlIaUUpRoFUsyaBZHQJ/haRDCxeN1fZQoaAZoCWgPQwjKMVncf2Tiv5SGlFKUaBVLMmgWR0Cf4CeGO+7EdX2UKGgGaAloD0MImpfD7jvG+7+UhpRSlGgVSzJoFkdAn96Fpj+aSnV9lChoBmgJaA9DCPEuF/Gd2PG/lIaUUpRoFUsyaBZHQJ/dEO5J9Rd1fZQoaAZoCWgPQwi9/bloyHj4v5SGlFKUaBVLMmgWR0Cf5iBLPD51dX2UKGgGaAloD0MIOIJUih1N9r+UhpRSlGgVSzJoFkdAn+TeH31zyXV9lChoBmgJaA9DCCJQ/YNIpgzAlIaUUpRoFUsyaBZHQJ/jPJLdvbZ1fZQoaAZoCWgPQwhavcPt0HAJwJSGlFKUaBVLMmgWR0Cf4cf5k9U0dX2UKGgGaAloD0MI/pjWprH9AMCUhpRSlGgVSzJoFkdAn+vFVDKHPHV9lChoBmgJaA9DCFWgFoOH6QDAlIaUUpRoFUsyaBZHQJ/qgNCqp991fZQoaAZoCWgPQwiwkSQIV+AAwJSGlFKUaBVLMmgWR0Cf6NvNeMQ3dX2UKGgGaAloD0MI5ssLsI8OAcCUhpRSlGgVSzJoFkdAn+dlRtP56HV9lChoBmgJaA9DCCR+xRoucvW/lIaUUpRoFUsyaBZHQJ/ueFK02Lp1fZQoaAZoCWgPQwjaVx6kp8gDwJSGlFKUaBVLMmgWR0Cf7TNATqSpdX2UKGgGaAloD0MIa378pUX9BMCUhpRSlGgVSzJoFkdAn+uOTq0MPXV9lChoBmgJaA9DCGTqruyCgf+/lIaUUpRoFUsyaBZHQJ/qFtj0+Tx1fZQoaAZoCWgPQwgPD2H8NG7sv5SGlFKUaBVLMmgWR0Cf8hdznzQNdX2UKGgGaAloD0MImL7XEBwX+7+UhpRSlGgVSzJoFkdAn/DTHGS6lXV9lChoBmgJaA9DCF8Lem8M4QPAlIaUUpRoFUsyaBZHQJ/vMaMrEtN1fZQoaAZoCWgPQwjD0ytlGSL6v5SGlFKUaBVLMmgWR0Cf7boWpIczdX2UKGgGaAloD0MIDr3Fw3vuAMCUhpRSlGgVSzJoFkdAn/TWrCFbmnV9lChoBmgJaA9DCKxXkdEBif6/lIaUUpRoFUsyaBZHQJ/zkh+vyLB1fZQoaAZoCWgPQwjaq4+Hvjv7v5SGlFKUaBVLMmgWR0Cf8e2hZha1dX2UKGgGaAloD0MIJVryeFo+9b+UhpRSlGgVSzJoFkdAn/B2TPjXF3V9lChoBmgJaA9DCKGhf4KL1fe/lIaUUpRoFUsyaBZHQJ/3pcfNiYt1fZQoaAZoCWgPQwiDFDyFXCn5v5SGlFKUaBVLMmgWR0Cf9mDxsl9jdX2UKGgGaAloD0MIb9V1qKYkDMCUhpRSlGgVSzJoFkdAn/S8iwB5o3V9lChoBmgJaA9DCMbE5uPaUO+/lIaUUpRoFUsyaBZHQJ/zR4hUzbh1fZQoaAZoCWgPQwhbRBSTN4AJwJSGlFKUaBVLMmgWR0Cf+mI1tO2zdX2UKGgGaAloD0MIejarPlcb/r+UhpRSlGgVSzJoFkdAn/kdsabWmXV9lChoBmgJaA9DCGCsb2ByIwbAlIaUUpRoFUsyaBZHQJ/3eTJQtSR1fZQoaAZoCWgPQwgg7BSrBmHyv5SGlFKUaBVLMmgWR0Cf9gHgxagVdX2UKGgGaAloD0MI7fSDukgh9L+UhpRSlGgVSzJoFkdAn/0fFNtZWHV9lChoBmgJaA9DCAX6RJ4k3QbAlIaUUpRoFUsyaBZHQJ/72rgflp51fZQoaAZoCWgPQwi8IvjfSrYGwJSGlFKUaBVLMmgWR0Cf+jaKk2xZdX2UKGgGaAloD0MIz4WRXtRu67+UhpRSlGgVSzJoFkdAn/i/IwM6R3V9lChoBmgJaA9DCDogCft2Evu/lIaUUpRoFUsyaBZHQJ//32K2rn11fZQoaAZoCWgPQwhlHCPZI5QCwJSGlFKUaBVLMmgWR0Cf/p0cfeUIdX2UKGgGaAloD0MI3gN0X87sAMCUhpRSlGgVSzJoFkdAn/z64YrJ83V9lChoBmgJaA9DCObPtwVLVQTAlIaUUpRoFUsyaBZHQJ/7iGqPwNN1fZQoaAZoCWgPQwjvVwG+27z8v5SGlFKUaBVLMmgWR0CgAVq0D2aldX2UKGgGaAloD0MILPAV3XptBMCUhpRSlGgVSzJoFkdAoAC4ZydWhnV9lChoBmgJaA9DCMb3xaUqrfu/lIaUUpRoFUsyaBZHQJ//zFo+Ofd1fZQoaAZoCWgPQwgtB3qobaMJwJSGlFKUaBVLMmgWR0Cf/lUcGTs6dX2UKGgGaAloD0MIXwzlRLsqBcCUhpRSlGgVSzJoFkdAoALEvCdjG3V9lChoBmgJaA9DCA4TDVLwlP+/lIaUUpRoFUsyaBZHQKACIoR7JGR1fZQoaAZoCWgPQwg7j4r/O2L4v5SGlFKUaBVLMmgWR0CgAVBje9BbdX2UKGgGaAloD0MIByY3iqz18r+UhpRSlGgVSzJoFkdAoACUxXXAdnV9lChoBmgJaA9DCIulSL4SiAbAlIaUUpRoFUsyaBZHQKAEI24uscR1fZQoaAZoCWgPQwjBdFq3QU0IwJSGlFKUaBVLMmgWR0CgA4ELpiZwdX2UKGgGaAloD0MIsvShC+q7D8CUhpRSlGgVSzJoFkdAoAKusgdOqXV9lChoBmgJaA9DCFaeQNgpFvO/lIaUUpRoFUsyaBZHQKAB8tMfzSV1fZQoaAZoCWgPQwjs2t5uSc7+v5SGlFKUaBVLMmgWR0CgBYGWMS9NdX2UKGgGaAloD0MIG0rtRbQ9CcCUhpRSlGgVSzJoFkdAoATfQF9roHV9lChoBmgJaA9DCIwPs5dtZ/i/lIaUUpRoFUsyaBZHQKAEDPznRsx1fZQoaAZoCWgPQwhYx/FDpZEBwJSGlFKUaBVLMmgWR0CgA1FA3T/idX2UKGgGaAloD0MIGqchqvBHCcCUhpRSlGgVSzJoFkdAoAbxCx/us3V9lChoBmgJaA9DCJrPudv1cgzAlIaUUpRoFUsyaBZHQKAGTp1zQu51fZQoaAZoCWgPQwijyFpDqX3/v5SGlFKUaBVLMmgWR0CgBXxlHz6KdX2UKGgGaAloD0MI8/+qI0d6/7+UhpRSlGgVSzJoFkdAoATBq/M4cXV9lChoBmgJaA9DCJAV/DbEuPi/lIaUUpRoFUsyaBZHQKAITzkp7Tl1fZQoaAZoCWgPQwhVMgBUcaPzv5SGlFKUaBVLMmgWR0CgB6zg/C66dX2UKGgGaAloD0MI39416EsvAsCUhpRSlGgVSzJoFkdAoAbadBjWkXV9lChoBmgJaA9DCO28jc2OdAjAlIaUUpRoFUsyaBZHQKAGHuIAOrh1ZS4="
|
| 60 |
+
},
|
| 61 |
+
"ep_success_buffer": {
|
| 62 |
+
":type:": "<class 'collections.deque'>",
|
| 63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 64 |
+
},
|
| 65 |
+
"_n_updates": 25000,
|
| 66 |
+
"n_steps": 5,
|
| 67 |
+
"gamma": 0.99,
|
| 68 |
+
"gae_lambda": 1.0,
|
| 69 |
+
"ent_coef": 0.0,
|
| 70 |
+
"vf_coef": 0.5,
|
| 71 |
+
"max_grad_norm": 0.5,
|
| 72 |
+
"normalize_advantage": false,
|
| 73 |
+
"observation_space": {
|
| 74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
| 75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
| 76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
| 77 |
+
"_shape": null,
|
| 78 |
+
"dtype": null,
|
| 79 |
+
"_np_random": null
|
| 80 |
+
},
|
| 81 |
+
"action_space": {
|
| 82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
| 84 |
+
"dtype": "float32",
|
| 85 |
+
"_shape": [
|
| 86 |
+
3
|
| 87 |
+
],
|
| 88 |
+
"low": "[-1. -1. -1.]",
|
| 89 |
+
"high": "[1. 1. 1.]",
|
| 90 |
+
"bounded_below": "[ True True True]",
|
| 91 |
+
"bounded_above": "[ True True True]",
|
| 92 |
+
"_np_random": null
|
| 93 |
+
},
|
| 94 |
+
"n_envs": 4
|
| 95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e389c4c72a98aa891aaed2066ffa3479b4150b75c97e587908b4616a60e6f4b2
|
| 3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43f4a81de81675ba616a2479eaaf82dd439023168bfd41c4274c237eed0d8588
|
| 3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.9.16
|
| 3 |
+
- Stable-Baselines3: 1.8.0
|
| 4 |
+
- PyTorch: 2.0.0+cu118
|
| 5 |
+
- GPU Enabled: False
|
| 6 |
+
- Numpy: 1.24.3
|
| 7 |
+
- Gym: 0.21.0
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f93c0089af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f93c008dbc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682535485272906353, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnh3JPq5pnjs69gk/nh3JPq5pnjs69gk/nh3JPq5pnjs69gk/nh3JPq5pnjs69gk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9qnMPXoya77pj4S/+7XCvT0Sqz+525o/LuFCP5aE/j6qxZq/mrACPhp8xr9Fd40/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACeHck+rmmeOzr2CT8Rs846vSpXumb29DueHck+rmmeOzr2CT8Rs846vSpXumb29DueHck+rmmeOzr2CT8Rs846vSpXumb29DueHck+rmmeOzr2CT8Rs846vSpXumb29DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3928041 0.00483438 0.53891337]\n [0.3928041 0.00483438 0.53891337]\n [0.3928041 0.00483438 0.53891337]\n [0.3928041 0.00483438 0.53891337]]", "desired_goal": "[[ 0.09993355 -0.22968474 -1.0356418 ]\n [-0.09507366 1.3364941 1.2098304 ]\n [ 0.76124847 0.4971053 -1.2091572 ]\n [ 0.1276268 -1.5506623 1.1052023 ]]", "observation": "[[ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]\n [ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]\n [ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]\n [ 0.3928041 0.00483438 0.53891337 0.00157699 -0.0008208 0.00747566]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzDPBvULXMj0smZg+XWouvY3Zab3/Izc+P1LUvUt9NTtyQw8+fe8LvsKc9jxx+i0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09433708 0.04366232 0.2980436 ]\n [-0.0425819 -0.05709224 0.17884825]\n [-0.1036725 0.00276931 0.13990572]\n [-0.13665576 0.03010404 0.16990067]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAdvBiH0C+L+UhpRSlIwBbJRLMowBdJRHQJ++Jv99+gF1fZQoaAZoCWgPQwguAI3SpX/fv5SGlFKUaBVLMmgWR0CfvOJqZc9odX2UKGgGaAloD0MIyy4YXHPH+b+UhpRSlGgVSzJoFkdAn7s+CCjDbnV9lChoBmgJaA9DCGCwG7YtivG/lIaUUpRoFUsyaBZHQJ+5xt52Qnx1fZQoaAZoCWgPQwjbFI+LapHnv5SGlFKUaBVLMmgWR0CfwKyYG+sYdX2UKGgGaAloD0MIP5C8cyjDAMCUhpRSlGgVSzJoFkdAn79n+2mYSnV9lChoBmgJaA9DCHy6umOxTei/lIaUUpRoFUsyaBZHQJ+9wywfQrt1fZQoaAZoCWgPQwiVKeYg6Cj0v5SGlFKUaBVLMmgWR0CfvEuLJjlQdX2UKGgGaAloD0MIg4b+CS5W8r+UhpRSlGgVSzJoFkdAn8NYK2KEWnV9lChoBmgJaA9DCB2Txf1HpvS/lIaUUpRoFUsyaBZHQJ/CE2sJY1Z1fZQoaAZoCWgPQwggls0cklr6v5SGlFKUaBVLMmgWR0CfwG7PY4ACdX2UKGgGaAloD0MIUB2rlJ4p9b+UhpRSlGgVSzJoFkdAn773e7+T/3V9lChoBmgJaA9DCM1Xycfugue/lIaUUpRoFUsyaBZHQJ/GAcS5AhV1fZQoaAZoCWgPQwgotRfRdkz9v5SGlFKUaBVLMmgWR0CfxL0k4WDZdX2UKGgGaAloD0MImNpSB3l9/L+UhpRSlGgVSzJoFkdAn8MZMg2ZRnV9lChoBmgJaA9DCJn1Yign2gHAlIaUUpRoFUsyaBZHQJ/Bot+TeO51fZQoaAZoCWgPQwjnjZPCvAf5v5SGlFKUaBVLMmgWR0CfyS+OfdyldX2UKGgGaAloD0MIzSIUW0ETA8CUhpRSlGgVSzJoFkdAn8fsSf16FHV9lChoBmgJaA9DCC6p2m6CjwLAlIaUUpRoFUsyaBZHQJ/GSYSg5BF1fZQoaAZoCWgPQwiSI52BkRfxv5SGlFKUaBVLMmgWR0CfxNRfnfVJdX2UKGgGaAloD0MIOh4zUBl/4r+UhpRSlGgVSzJoFkdAn821iSaEz3V9lChoBmgJaA9DCCDPLt/68PG/lIaUUpRoFUsyaBZHQJ/McxZdOZd1fZQoaAZoCWgPQwiR7ucU5Gfqv5SGlFKUaBVLMmgWR0CfytDfFaStdX2UKGgGaAloD0MIhEvHnGfsAsCUhpRSlGgVSzJoFkdAn8lglByCF3V9lChoBmgJaA9DCB3k9WBSfN2/lIaUUpRoFUsyaBZHQJ/SWuoxYaJ1fZQoaAZoCWgPQwhwXpz4aicHwJSGlFKUaBVLMmgWR0Cf0Rllbu+idX2UKGgGaAloD0MIK9uHvOUKC8CUhpRSlGgVSzJoFkdAn893dweeWnV9lChoBmgJaA9DCH4BvXDngve/lIaUUpRoFUsyaBZHQJ/OAfbKzRh1fZQoaAZoCWgPQwg1Bwjm6FEPwJSGlFKUaBVLMmgWR0Cf1w0CzTnadX2UKGgGaAloD0MI1IBB0qcV8b+UhpRSlGgVSzJoFkdAn9XKxPfsNXV9lChoBmgJaA9DCIofY+5awv2/lIaUUpRoFUsyaBZHQJ/UKJxeb/h1fZQoaAZoCWgPQwibkNYYdALzv5SGlFKUaBVLMmgWR0Cf0rQqI7/5dX2UKGgGaAloD0MIgEQTKGLR97+UhpRSlGgVSzJoFkdAn9x+N96Tn3V9lChoBmgJaA9DCGFu93KfHO+/lIaUUpRoFUsyaBZHQJ/bP5nDiwV1fZQoaAZoCWgPQwgpyxDHuvjyv5SGlFKUaBVLMmgWR0Cf2Z2tdRixdX2UKGgGaAloD0MInKVkOQml8L+UhpRSlGgVSzJoFkdAn9gouscQy3V9lChoBmgJaA9DCDnVWpiFVgTAlIaUUpRoFUsyaBZHQJ/haRDCxeN1fZQoaAZoCWgPQwjKMVncf2Tiv5SGlFKUaBVLMmgWR0Cf4CeGO+7EdX2UKGgGaAloD0MImpfD7jvG+7+UhpRSlGgVSzJoFkdAn96Fpj+aSnV9lChoBmgJaA9DCPEuF/Gd2PG/lIaUUpRoFUsyaBZHQJ/dEO5J9Rd1fZQoaAZoCWgPQwi9/bloyHj4v5SGlFKUaBVLMmgWR0Cf5iBLPD51dX2UKGgGaAloD0MIOIJUih1N9r+UhpRSlGgVSzJoFkdAn+TeH31zyXV9lChoBmgJaA9DCCJQ/YNIpgzAlIaUUpRoFUsyaBZHQJ/jPJLdvbZ1fZQoaAZoCWgPQwhavcPt0HAJwJSGlFKUaBVLMmgWR0Cf4cf5k9U0dX2UKGgGaAloD0MI/pjWprH9AMCUhpRSlGgVSzJoFkdAn+vFVDKHPHV9lChoBmgJaA9DCFWgFoOH6QDAlIaUUpRoFUsyaBZHQJ/qgNCqp991fZQoaAZoCWgPQwiwkSQIV+AAwJSGlFKUaBVLMmgWR0Cf6NvNeMQ3dX2UKGgGaAloD0MI5ssLsI8OAcCUhpRSlGgVSzJoFkdAn+dlRtP56HV9lChoBmgJaA9DCCR+xRoucvW/lIaUUpRoFUsyaBZHQJ/ueFK02Lp1fZQoaAZoCWgPQwjaVx6kp8gDwJSGlFKUaBVLMmgWR0Cf7TNATqSpdX2UKGgGaAloD0MIa378pUX9BMCUhpRSlGgVSzJoFkdAn+uOTq0MPXV9lChoBmgJaA9DCGTqruyCgf+/lIaUUpRoFUsyaBZHQJ/qFtj0+Tx1fZQoaAZoCWgPQwgPD2H8NG7sv5SGlFKUaBVLMmgWR0Cf8hdznzQNdX2UKGgGaAloD0MImL7XEBwX+7+UhpRSlGgVSzJoFkdAn/DTHGS6lXV9lChoBmgJaA9DCF8Lem8M4QPAlIaUUpRoFUsyaBZHQJ/vMaMrEtN1fZQoaAZoCWgPQwjD0ytlGSL6v5SGlFKUaBVLMmgWR0Cf7boWpIczdX2UKGgGaAloD0MIDr3Fw3vuAMCUhpRSlGgVSzJoFkdAn/TWrCFbmnV9lChoBmgJaA9DCKxXkdEBif6/lIaUUpRoFUsyaBZHQJ/zkh+vyLB1fZQoaAZoCWgPQwjaq4+Hvjv7v5SGlFKUaBVLMmgWR0Cf8e2hZha1dX2UKGgGaAloD0MIJVryeFo+9b+UhpRSlGgVSzJoFkdAn/B2TPjXF3V9lChoBmgJaA9DCKGhf4KL1fe/lIaUUpRoFUsyaBZHQJ/3pcfNiYt1fZQoaAZoCWgPQwiDFDyFXCn5v5SGlFKUaBVLMmgWR0Cf9mDxsl9jdX2UKGgGaAloD0MIb9V1qKYkDMCUhpRSlGgVSzJoFkdAn/S8iwB5o3V9lChoBmgJaA9DCMbE5uPaUO+/lIaUUpRoFUsyaBZHQJ/zR4hUzbh1fZQoaAZoCWgPQwhbRBSTN4AJwJSGlFKUaBVLMmgWR0Cf+mI1tO2zdX2UKGgGaAloD0MIejarPlcb/r+UhpRSlGgVSzJoFkdAn/kdsabWmXV9lChoBmgJaA9DCGCsb2ByIwbAlIaUUpRoFUsyaBZHQJ/3eTJQtSR1fZQoaAZoCWgPQwgg7BSrBmHyv5SGlFKUaBVLMmgWR0Cf9gHgxagVdX2UKGgGaAloD0MI7fSDukgh9L+UhpRSlGgVSzJoFkdAn/0fFNtZWHV9lChoBmgJaA9DCAX6RJ4k3QbAlIaUUpRoFUsyaBZHQJ/72rgflp51fZQoaAZoCWgPQwi8IvjfSrYGwJSGlFKUaBVLMmgWR0Cf+jaKk2xZdX2UKGgGaAloD0MIz4WRXtRu67+UhpRSlGgVSzJoFkdAn/i/IwM6R3V9lChoBmgJaA9DCDogCft2Evu/lIaUUpRoFUsyaBZHQJ//32K2rn11fZQoaAZoCWgPQwhlHCPZI5QCwJSGlFKUaBVLMmgWR0Cf/p0cfeUIdX2UKGgGaAloD0MI3gN0X87sAMCUhpRSlGgVSzJoFkdAn/z64YrJ83V9lChoBmgJaA9DCObPtwVLVQTAlIaUUpRoFUsyaBZHQJ/7iGqPwNN1fZQoaAZoCWgPQwjvVwG+27z8v5SGlFKUaBVLMmgWR0CgAVq0D2aldX2UKGgGaAloD0MILPAV3XptBMCUhpRSlGgVSzJoFkdAoAC4ZydWhnV9lChoBmgJaA9DCMb3xaUqrfu/lIaUUpRoFUsyaBZHQJ//zFo+Ofd1fZQoaAZoCWgPQwgtB3qobaMJwJSGlFKUaBVLMmgWR0Cf/lUcGTs6dX2UKGgGaAloD0MIXwzlRLsqBcCUhpRSlGgVSzJoFkdAoALEvCdjG3V9lChoBmgJaA9DCA4TDVLwlP+/lIaUUpRoFUsyaBZHQKACIoR7JGR1fZQoaAZoCWgPQwg7j4r/O2L4v5SGlFKUaBVLMmgWR0CgAVBje9BbdX2UKGgGaAloD0MIByY3iqz18r+UhpRSlGgVSzJoFkdAoACUxXXAdnV9lChoBmgJaA9DCIulSL4SiAbAlIaUUpRoFUsyaBZHQKAEI24uscR1fZQoaAZoCWgPQwjBdFq3QU0IwJSGlFKUaBVLMmgWR0CgA4ELpiZwdX2UKGgGaAloD0MIsvShC+q7D8CUhpRSlGgVSzJoFkdAoAKusgdOqXV9lChoBmgJaA9DCFaeQNgpFvO/lIaUUpRoFUsyaBZHQKAB8tMfzSV1fZQoaAZoCWgPQwjs2t5uSc7+v5SGlFKUaBVLMmgWR0CgBYGWMS9NdX2UKGgGaAloD0MIG0rtRbQ9CcCUhpRSlGgVSzJoFkdAoATfQF9roHV9lChoBmgJaA9DCIwPs5dtZ/i/lIaUUpRoFUsyaBZHQKAEDPznRsx1fZQoaAZoCWgPQwhYx/FDpZEBwJSGlFKUaBVLMmgWR0CgA1FA3T/idX2UKGgGaAloD0MIGqchqvBHCcCUhpRSlGgVSzJoFkdAoAbxCx/us3V9lChoBmgJaA9DCJrPudv1cgzAlIaUUpRoFUsyaBZHQKAGTp1zQu51fZQoaAZoCWgPQwijyFpDqX3/v5SGlFKUaBVLMmgWR0CgBXxlHz6KdX2UKGgGaAloD0MI8/+qI0d6/7+UhpRSlGgVSzJoFkdAoATBq/M4cXV9lChoBmgJaA9DCJAV/DbEuPi/lIaUUpRoFUsyaBZHQKAITzkp7Tl1fZQoaAZoCWgPQwhVMgBUcaPzv5SGlFKUaBVLMmgWR0CgB6zg/C66dX2UKGgGaAloD0MI39416EsvAsCUhpRSlGgVSzJoFkdAoAbadBjWkXV9lChoBmgJaA9DCO28jc2OdAjAlIaUUpRoFUsyaBZHQKAGHuIAOrh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
|
Binary file (378 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -1.5864246334356722, "std_reward": 1.5476587581570622, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T19:48:20.163283"}
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38f669c7cb4c07456ef8deecfa8926be48db78016496369b92795e2e690c9ae3
|
| 3 |
+
size 2381
|