jcmc commited on
Commit
e3b5f4e
1 Parent(s): b932980

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ga-IE
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_7_0
8
+ - generated_from_trainer
9
+ datasets:
10
+ - common_voice
11
+ model-index:
12
+ - name: ''
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ #
20
+
21
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: nan
24
+ - Wer: 1.0
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 1
45
+ - eval_batch_size: 1
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 4
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 100.0
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:---:|
59
+ | 3.0395 | 1.94 | 500 | 3.0831 | 1.0 |
60
+ | 3.0126 | 3.87 | 1000 | 2.9935 | 1.0 |
61
+ | 2.9259 | 5.81 | 1500 | 2.9915 | 1.0 |
62
+ | 2.9109 | 7.75 | 2000 | 2.9006 | 1.0 |
63
+ | 2.8934 | 9.69 | 2500 | 2.9266 | 1.0 |
64
+ | 2.9014 | 11.63 | 3000 | 2.8970 | 1.0 |
65
+ | 2.8932 | 13.56 | 3500 | 2.8874 | 1.0 |
66
+ | 0.0 | 15.5 | 4000 | nan | 1.0 |
67
+ | 0.0 | 17.44 | 4500 | nan | 1.0 |
68
+ | 0.0 | 19.38 | 5000 | nan | 1.0 |
69
+ | 0.0 | 21.32 | 5500 | nan | 1.0 |
70
+ | 0.0 | 23.26 | 6000 | nan | 1.0 |
71
+ | 0.0 | 25.19 | 6500 | nan | 1.0 |
72
+ | 0.0 | 27.13 | 7000 | nan | 1.0 |
73
+ | 0.0 | 29.07 | 7500 | nan | 1.0 |
74
+ | 0.0 | 31.01 | 8000 | nan | 1.0 |
75
+ | 0.0 | 32.94 | 8500 | nan | 1.0 |
76
+ | 0.0 | 34.88 | 9000 | nan | 1.0 |
77
+ | 0.0 | 36.82 | 9500 | nan | 1.0 |
78
+ | 0.0 | 38.76 | 10000 | nan | 1.0 |
79
+ | 0.0 | 40.7 | 10500 | nan | 1.0 |
80
+ | 0.0 | 42.63 | 11000 | nan | 1.0 |
81
+ | 0.0 | 44.57 | 11500 | nan | 1.0 |
82
+ | 0.0 | 46.51 | 12000 | nan | 1.0 |
83
+ | 0.0 | 48.45 | 12500 | nan | 1.0 |
84
+ | 0.0 | 50.39 | 13000 | nan | 1.0 |
85
+ | 0.0 | 52.32 | 13500 | nan | 1.0 |
86
+ | 0.0 | 54.26 | 14000 | nan | 1.0 |
87
+ | 0.0 | 56.2 | 14500 | nan | 1.0 |
88
+ | 0.0 | 58.14 | 15000 | nan | 1.0 |
89
+ | 0.0 | 60.08 | 15500 | nan | 1.0 |
90
+ | 0.0 | 62.02 | 16000 | nan | 1.0 |
91
+ | 0.0 | 63.95 | 16500 | nan | 1.0 |
92
+ | 0.0 | 65.89 | 17000 | nan | 1.0 |
93
+ | 0.0 | 67.83 | 17500 | nan | 1.0 |
94
+ | 0.0 | 69.77 | 18000 | nan | 1.0 |
95
+ | 0.0 | 71.7 | 18500 | nan | 1.0 |
96
+ | 0.0 | 73.64 | 19000 | nan | 1.0 |
97
+ | 0.0 | 75.58 | 19500 | nan | 1.0 |
98
+ | 0.0 | 77.52 | 20000 | nan | 1.0 |
99
+ | 0.0 | 79.46 | 20500 | nan | 1.0 |
100
+ | 0.0 | 81.39 | 21000 | nan | 1.0 |
101
+ | 0.0 | 83.33 | 21500 | nan | 1.0 |
102
+ | 0.0 | 85.27 | 22000 | nan | 1.0 |
103
+ | 0.0 | 87.21 | 22500 | nan | 1.0 |
104
+ | 0.0 | 89.15 | 23000 | nan | 1.0 |
105
+ | 0.0 | 91.09 | 23500 | nan | 1.0 |
106
+ | 0.0 | 93.02 | 24000 | nan | 1.0 |
107
+ | 0.0 | 94.96 | 24500 | nan | 1.0 |
108
+ | 0.0 | 96.9 | 25000 | nan | 1.0 |
109
+ | 0.0 | 98.83 | 25500 | nan | 1.0 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.16.0.dev0
115
+ - Pytorch 1.10.1+cu102
116
+ - Datasets 1.17.1.dev0
117
+ - Tokenizers 0.11.0