update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ga-IE
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_7_0
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- common_voice
|
11 |
+
model-index:
|
12 |
+
- name: ''
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
#
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: nan
|
24 |
+
- Wer: 1.0
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 1
|
45 |
+
- eval_batch_size: 1
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 4
|
48 |
+
- total_train_batch_size: 4
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 100.0
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---:|
|
59 |
+
| 3.0395 | 1.94 | 500 | 3.0831 | 1.0 |
|
60 |
+
| 3.0126 | 3.87 | 1000 | 2.9935 | 1.0 |
|
61 |
+
| 2.9259 | 5.81 | 1500 | 2.9915 | 1.0 |
|
62 |
+
| 2.9109 | 7.75 | 2000 | 2.9006 | 1.0 |
|
63 |
+
| 2.8934 | 9.69 | 2500 | 2.9266 | 1.0 |
|
64 |
+
| 2.9014 | 11.63 | 3000 | 2.8970 | 1.0 |
|
65 |
+
| 2.8932 | 13.56 | 3500 | 2.8874 | 1.0 |
|
66 |
+
| 0.0 | 15.5 | 4000 | nan | 1.0 |
|
67 |
+
| 0.0 | 17.44 | 4500 | nan | 1.0 |
|
68 |
+
| 0.0 | 19.38 | 5000 | nan | 1.0 |
|
69 |
+
| 0.0 | 21.32 | 5500 | nan | 1.0 |
|
70 |
+
| 0.0 | 23.26 | 6000 | nan | 1.0 |
|
71 |
+
| 0.0 | 25.19 | 6500 | nan | 1.0 |
|
72 |
+
| 0.0 | 27.13 | 7000 | nan | 1.0 |
|
73 |
+
| 0.0 | 29.07 | 7500 | nan | 1.0 |
|
74 |
+
| 0.0 | 31.01 | 8000 | nan | 1.0 |
|
75 |
+
| 0.0 | 32.94 | 8500 | nan | 1.0 |
|
76 |
+
| 0.0 | 34.88 | 9000 | nan | 1.0 |
|
77 |
+
| 0.0 | 36.82 | 9500 | nan | 1.0 |
|
78 |
+
| 0.0 | 38.76 | 10000 | nan | 1.0 |
|
79 |
+
| 0.0 | 40.7 | 10500 | nan | 1.0 |
|
80 |
+
| 0.0 | 42.63 | 11000 | nan | 1.0 |
|
81 |
+
| 0.0 | 44.57 | 11500 | nan | 1.0 |
|
82 |
+
| 0.0 | 46.51 | 12000 | nan | 1.0 |
|
83 |
+
| 0.0 | 48.45 | 12500 | nan | 1.0 |
|
84 |
+
| 0.0 | 50.39 | 13000 | nan | 1.0 |
|
85 |
+
| 0.0 | 52.32 | 13500 | nan | 1.0 |
|
86 |
+
| 0.0 | 54.26 | 14000 | nan | 1.0 |
|
87 |
+
| 0.0 | 56.2 | 14500 | nan | 1.0 |
|
88 |
+
| 0.0 | 58.14 | 15000 | nan | 1.0 |
|
89 |
+
| 0.0 | 60.08 | 15500 | nan | 1.0 |
|
90 |
+
| 0.0 | 62.02 | 16000 | nan | 1.0 |
|
91 |
+
| 0.0 | 63.95 | 16500 | nan | 1.0 |
|
92 |
+
| 0.0 | 65.89 | 17000 | nan | 1.0 |
|
93 |
+
| 0.0 | 67.83 | 17500 | nan | 1.0 |
|
94 |
+
| 0.0 | 69.77 | 18000 | nan | 1.0 |
|
95 |
+
| 0.0 | 71.7 | 18500 | nan | 1.0 |
|
96 |
+
| 0.0 | 73.64 | 19000 | nan | 1.0 |
|
97 |
+
| 0.0 | 75.58 | 19500 | nan | 1.0 |
|
98 |
+
| 0.0 | 77.52 | 20000 | nan | 1.0 |
|
99 |
+
| 0.0 | 79.46 | 20500 | nan | 1.0 |
|
100 |
+
| 0.0 | 81.39 | 21000 | nan | 1.0 |
|
101 |
+
| 0.0 | 83.33 | 21500 | nan | 1.0 |
|
102 |
+
| 0.0 | 85.27 | 22000 | nan | 1.0 |
|
103 |
+
| 0.0 | 87.21 | 22500 | nan | 1.0 |
|
104 |
+
| 0.0 | 89.15 | 23000 | nan | 1.0 |
|
105 |
+
| 0.0 | 91.09 | 23500 | nan | 1.0 |
|
106 |
+
| 0.0 | 93.02 | 24000 | nan | 1.0 |
|
107 |
+
| 0.0 | 94.96 | 24500 | nan | 1.0 |
|
108 |
+
| 0.0 | 96.9 | 25000 | nan | 1.0 |
|
109 |
+
| 0.0 | 98.83 | 25500 | nan | 1.0 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- Transformers 4.16.0.dev0
|
115 |
+
- Pytorch 1.10.1+cu102
|
116 |
+
- Datasets 1.17.1.dev0
|
117 |
+
- Tokenizers 0.11.0
|