Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1001.59 +/- 207.56
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee6700c893741bbba377b9bc9f8e9d4f840e26ab6a1bfa144fab51d4fc95016e
|
3 |
+
size 129194
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6761d273b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6761d27440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6761d274d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6761d27560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6761d275f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6761d27680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6761d27710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6761d277a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6761d27830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6761d278c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6761d27950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6761d68d80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1663076971.7238584,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA9e9bPdAfFL9wsgc/u3SmPbizwzz68lM/0rmyvkrGDkDD02U/2W6kvediEL+0p8076Oz1P/3+ZEBxrMa/O8sHQAOHrj/jVTM7bVGRP8Bo7TzLNHS/pvOEPUOym7zZkYW9tDsaPwX/CMCQzSTAv3gkP4V0ab+x25y/xeY1vOyO5T+9Bv6/8dCtv07Mqj1JUdY9r/1dP4NePT93jcm+d3BWPtPYWr8pa1vAuhsPP684Vj+vCFq+MWW/v1UfFz/mcwtAagX0vuUsB0CvKm+/9L8pvLQ7Gj9tMO8+09TGPlw7x7/xu5G+sbfPv6JCPr8Go6o/9AhevkZ7Hj8+KTo96iOIvS9cFT/4U4O9nV24vYAgoD7vtD2/BzxGwPN2lj4TR1m9L6MvP3zgyr9KypI+JiOWPrENiz7TPGU+i4Nyv6wF8j20Oxo/Bf8IwNPUxj5cO8e/Yoayvx/YZ7/8EaQ+zOlNvoI5lT7a4wg/3FL7PTXIyb3UFWU/vREWvToGEL/UXx+8SybcvnnQGT/bMmA/1YkIPXkEJb8RT2Y/E7KCP6sCJ7/muzw/pNUCP5xFM7+YYM89HXXUv20w7z7T1MY+v3gkP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAE1D9rQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAz7J+9AAAAANcm+78AAAAAYSghPQAAAACNYuk/AAAAAD/4Ub0AAAAAsTvcPwAAAAA/rKo9AAAAACaP/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBLIo0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFzWhvQAAAACdBf+/AAAAAEbBwz0AAAAAjHDmPwAAAABWtTS9AAAAALnU3D8AAAAAyp3wPQAAAABfEAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTi1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIkQxj0AAAAA02HmvwAAAABZ01C9AAAAAPqX4j8AAAAARA51PAAAAAB0vfg/AAAAACnkk70AAAAAoenovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs3ibYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFJBE+AAAAAPtc+78AAAAArDr5vQAAAABJewBAAAAAALz4a70AAAAA/xT8PwAAAABLpA6+AAAAADRY9b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJTk1ng5zYGMAWyUTegDjAF0lEdAqmX8QEpy63V9lChoBkdAkqWZqM3qA2gHTegDaAhHQKpucDIRywR1fZQoaAZHQJWk2WjXWe9oB03oA2gIR0CqbwJXhfjTdX2UKGgGR0CA7TFsHjZMaAdN6ANoCEdAqnBwRChN/XV9lChoBkdAjUwFajesP2gHTegDaAhHQKp0EkwevIR1fZQoaAZHQIvgyHZbpvBoB01EA2gIR0Cqe2BHCoCNdX2UKGgGR0CUVEpAlfJFaAdN6ANoCEdAqn48DW9UTHV9lChoBkdAjyfaEzwc52gHTegDaAhHQKp/pB8hLXd1fZQoaAZHQJBygdn003xoB03oA2gIR0Cqgw8CgbqAdX2UKGgGR0CSvAZeRgZ1aAdN6ANoCEdAqokla6jFh3V9lChoBkdAkPXTqW1MNGgHTegDaAhHQKqL+MspXp51fZQoaAZHQJgvjFdcB2hoB03oA2gIR0CqjV9Jrcj8dX2UKGgGR0CXqcM2WIGhaAdN6ANoCEdAqpCv1BdD6XV9lChoBkdAlSBfxc3VC2gHTegDaAhHQKqWxcBU70Z1fZQoaAZHQJY6abqhUR5oB03oA2gIR0CqmYlqi48VdX2UKGgGR0CNPN8m8dxRaAdN6ANoCEdAqprxTVDrq3V9lChoBkdAlNRES26TXGgHTegDaAhHQKqeK6jnFHd1fZQoaAZHQJUWNZ7ojfNoB03oA2gIR0CqpCG8274BdX2UKGgGR0CVSEmr8zhxaAdN6ANoCEdAqqbdn7Hhj3V9lChoBkdAkPvpXZGrj2gHTegDaAhHQKqoRuDSPU91fZQoaAZHQJXHXaL4vexoB03oA2gIR0Cqq6f7JnxsdX2UKGgGR0CQwdXvH93saAdN6ANoCEdAqrHE3yZrpXV9lChoBkdAkd3QLNOdoWgHTegDaAhHQKq0kgL7XQN1fZQoaAZHQIjEV6gM+eRoB03oA2gIR0CqtgCpFTegdX2UKGgGR0CQvT0elsP8aAdN6ANoCEdAqrlJbOeJ53V9lChoBkdAk3wwtz0Yj2gHTegDaAhHQKq/i56MR6F1fZQoaAZHQJC3VbHIZIhoB03oA2gIR0CqwluRs/IKdX2UKGgGR0CUIStihFmWaAdN6ANoCEdAqsPJq46OpHV9lChoBkdAjtpOogmqpGgHTegDaAhHQKrHGTNdJJ51fZQoaAZHQJXL4P+XJHRoB03oA2gIR0CqzT1KwpvxdX2UKGgGR0CUIlIldC3PaAdN6ANoCEdAqtALns9jgHV9lChoBkdAljAsbNr0rmgHTegDaAhHQKrRkntOVPh1fZQoaAZHQJVMjIOpbUxoB03oA2gIR0Cq1NHkT6BRdX2UKGgGR0CXH1wDvE0jaAdN6ANoCEdAqtsAG2TgVHV9lChoBkdAmSCY4yXUpmgHTegDaAhHQKrd0jgydnV1fZQoaAZHQJQsNcqvvBtoB03oA2gIR0Cq3z3b/Ot5dX2UKGgGR0CR3H6MBIWhaAdN6ANoCEdAquKSXa8HwHV9lChoBkdAir4zZQHiWGgHTegDaAhHQKrozehPCVN1fZQoaAZHQJWUsnAqNIdoB03oA2gIR0Cq66LFOwgUdX2UKGgGR0CWNwt16mfoaAdN6ANoCEdAqu0XKr7wa3V9lChoBkdAktKfsu3+dmgHTegDaAhHQKrwZ+CK77N1fZQoaAZHQJUan+JgsshoB03oA2gIR0Cq9oULUkOadX2UKGgGR0CRdaE4NqgzaAdN6ANoCEdAqvlco8ZDRnV9lChoBkdAjzjnIyTINmgHTegDaAhHQKr6y8gZCOZ1fZQoaAZHQJcWWMyad+ZoB03oA2gIR0Cq/hOxbB42dX2UKGgGR0CUsRznA6+4aAdN6ANoCEdAqwRqDZlFt3V9lChoBkdAk7FN29tdiWgHTegDaAhHQKsHSsV+I/J1fZQoaAZHQJQ7d9Cu2Z1oB03oA2gIR0CrCL+4LCvYdX2UKGgGR0CA+fczImw8aAdN6ANoCEdAqwwcR15jY3V9lChoBkdAlTFZjYqXnmgHTegDaAhHQKsScoDPnjh1fZQoaAZHQJXGpSIgvDhoB03oA2gIR0CrFUqG1x82dX2UKGgGR0CAj1dYW+GoaAdN6ANoCEdAqxa0TN+so3V9lChoBkdAkOC9ZvDP4WgHTegDaAhHQKsaGkMTewd1fZQoaAZHQJMKTSMLncNoB03oA2gIR0CrIFUzj3mFdX2UKGgGR0CVorWgOBlMaAdN6ANoCEdAqyMkKVpsXXV9lChoBkdAlQrXVTaTOmgHTegDaAhHQKski24NI9V1fZQoaAZHQJLHIPczqKRoB03oA2gIR0CrJ9ooE0SAdX2UKGgGR0CWllO8TSLJaAdN6ANoCEdAqy4Ye7tiQXV9lChoBkdAlvEtIGyHEmgHTegDaAhHQKsw7pyIYWN1fZQoaAZHQITO3+OwPiFoB03oA2gIR0CrMmBew9q2dX2UKGgGR0CU6sUVBUrDaAdN6ANoCEdAqzXFNahYeXV9lChoBkdAlmyIPsiSq2gHTegDaAhHQKs7+nk1dgR1fZQoaAZHQJYEBMi8nNRoB03oA2gIR0CrPslpXZGsdX2UKGgGR0CXgymlImPYaAdN6ANoCEdAq0A3+ERJ3HV9lChoBkdAf9RK28Zk1GgHTegDaAhHQKtDjikwevJ1fZQoaAZHQI+HQ2GZeAxoB03oA2gIR0CrSeowdsBRdX2UKGgGR0CUhnYZEUj+aAdN6ANoCEdAq0zJnxri2nV9lChoBkdAkGNvP5YYBWgHTegDaAhHQKtONXmNiph1fZQoaAZHQJPqARL9MsZoB03oA2gIR0CrUY7Q1JlKdX2UKGgGR0CXF3bGWD6FaAdN6ANoCEdAq1essxwhn3V9lChoBkdAjPyZOSGJvmgHTegDaAhHQKtahpi7TUl1fZQoaAZHQJR6yfTTfBNoB03oA2gIR0CrW/fIKc/ddX2UKGgGR0CZioQL/jsEaAdN6ANoCEdAq19C/CZWrHV9lChoBkdAmSUHhKlHjWgHTegDaAhHQKtlcMvysjp1fZQoaAZHQIek1LxqfvpoB03oA2gIR0CraDXumaYvdX2UKGgGR0CYt48qnWJ8aAdN6ANoCEdAq2miExqO93V9lChoBkdAmJsCPyTY/WgHTegDaAhHQKts55C4SYh1fZQoaAZHQJghmQ1aW5ZoB03oA2gIR0CrcxXEZR8/dX2UKGgGR0CU2bbjLjgiaAdN6ANoCEdAq3XmPgeijHV9lChoBkdAmPgHrleWwGgHTegDaAhHQKt3UGOdXkp1fZQoaAZHQJgPD5aePJdoB03oA2gIR0CrepV27nPndX2UKGgGR0CX15Uvf0mMaAdN6ANoCEdAq4DJOtW+5HV9lChoBkdAlntCWAwwkGgHTegDaAhHQKuDlrcj7hx1fZQoaAZHQJgmMOc2BJ9oB03oA2gIR0CrhP6s6q82dX2UKGgGR0CXqHnwXqJNaAdN6ANoCEdAq4hvlbNbDHV9lChoBkdAljF6Y/mknGgHTegDaAhHQKuOiZ7Xxvx1fZQoaAZHQJiBC23KB/ZoB03oA2gIR0CrkWQsXizcdX2UKGgGR0CX9S3qiXY2aAdN6ANoCEdAq5LJE2HclHV9lChoBkdAkzbAumJm/WgHTegDaAhHQKuWFWmP5pJ1fZQoaAZHQJh4H3K0UoNoB03oA2gIR0CrnDvhZQpGdX2UKGgGR0CVQwtdRiw0aAdN6ANoCEdAq58RwyZa3nV9lChoBkdAkxcPWMCLdmgHTegDaAhHQKuggXk5p8F1fZQoaAZHQIkup4fOlftoB03oA2gIR0Cro+XIEKVqdX2UKGgGR0B6623I+4b0aAdN6ANoCEdAq6pNpblijXV9lChoBkdAiQ5iLdepoGgHTegDaAhHQKutNv3JxNt1fZQoaAZHQIBfEIkZ75VoB03oA2gIR0CrrrR1HOKPdX2UKGgGR0CHPPfEXLvDaAdN6ANoCEdAq7IeN1hb4nV9lChoBkdAjOIU65oXbmgHTegDaAhHQKu4ZZ7HAAR1fZQoaAZHQJIh0WP91lpoB03oA2gIR0Cru0Ev9LpSdX2UKGgGR0B7NKQfZElWaAdN6ANoCEdAq7y7b5/LDHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02677c6336d7ac74e0b31a778867cefd2cdce4c83746c8559ad0c2d03cab9441
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:798e75411f7424ad8dc6a98638940337e9bc101f217c60da1ce7015953bd1f9e
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6761d273b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6761d27440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6761d274d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6761d27560>", "_build": "<function ActorCriticPolicy._build at 0x7f6761d275f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6761d27680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6761d27710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6761d277a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6761d27830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6761d278c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6761d27950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6761d68d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663076971.7238584, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA9e9bPdAfFL9wsgc/u3SmPbizwzz68lM/0rmyvkrGDkDD02U/2W6kvediEL+0p8076Oz1P/3+ZEBxrMa/O8sHQAOHrj/jVTM7bVGRP8Bo7TzLNHS/pvOEPUOym7zZkYW9tDsaPwX/CMCQzSTAv3gkP4V0ab+x25y/xeY1vOyO5T+9Bv6/8dCtv07Mqj1JUdY9r/1dP4NePT93jcm+d3BWPtPYWr8pa1vAuhsPP684Vj+vCFq+MWW/v1UfFz/mcwtAagX0vuUsB0CvKm+/9L8pvLQ7Gj9tMO8+09TGPlw7x7/xu5G+sbfPv6JCPr8Go6o/9AhevkZ7Hj8+KTo96iOIvS9cFT/4U4O9nV24vYAgoD7vtD2/BzxGwPN2lj4TR1m9L6MvP3zgyr9KypI+JiOWPrENiz7TPGU+i4Nyv6wF8j20Oxo/Bf8IwNPUxj5cO8e/Yoayvx/YZ7/8EaQ+zOlNvoI5lT7a4wg/3FL7PTXIyb3UFWU/vREWvToGEL/UXx+8SybcvnnQGT/bMmA/1YkIPXkEJb8RT2Y/E7KCP6sCJ7/muzw/pNUCP5xFM7+YYM89HXXUv20w7z7T1MY+v3gkP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAE1D9rQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAz7J+9AAAAANcm+78AAAAAYSghPQAAAACNYuk/AAAAAD/4Ub0AAAAAsTvcPwAAAAA/rKo9AAAAACaP/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBLIo0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFzWhvQAAAACdBf+/AAAAAEbBwz0AAAAAjHDmPwAAAABWtTS9AAAAALnU3D8AAAAAyp3wPQAAAABfEAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTi1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIkQxj0AAAAA02HmvwAAAABZ01C9AAAAAPqX4j8AAAAARA51PAAAAAB0vfg/AAAAACnkk70AAAAAoenovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs3ibYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFJBE+AAAAAPtc+78AAAAArDr5vQAAAABJewBAAAAAALz4a70AAAAA/xT8PwAAAABLpA6+AAAAADRY9b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJTk1ng5zYGMAWyUTegDjAF0lEdAqmX8QEpy63V9lChoBkdAkqWZqM3qA2gHTegDaAhHQKpucDIRywR1fZQoaAZHQJWk2WjXWe9oB03oA2gIR0CqbwJXhfjTdX2UKGgGR0CA7TFsHjZMaAdN6ANoCEdAqnBwRChN/XV9lChoBkdAjUwFajesP2gHTegDaAhHQKp0EkwevIR1fZQoaAZHQIvgyHZbpvBoB01EA2gIR0Cqe2BHCoCNdX2UKGgGR0CUVEpAlfJFaAdN6ANoCEdAqn48DW9UTHV9lChoBkdAjyfaEzwc52gHTegDaAhHQKp/pB8hLXd1fZQoaAZHQJBygdn003xoB03oA2gIR0Cqgw8CgbqAdX2UKGgGR0CSvAZeRgZ1aAdN6ANoCEdAqokla6jFh3V9lChoBkdAkPXTqW1MNGgHTegDaAhHQKqL+MspXp51fZQoaAZHQJgvjFdcB2hoB03oA2gIR0CqjV9Jrcj8dX2UKGgGR0CXqcM2WIGhaAdN6ANoCEdAqpCv1BdD6XV9lChoBkdAlSBfxc3VC2gHTegDaAhHQKqWxcBU70Z1fZQoaAZHQJY6abqhUR5oB03oA2gIR0CqmYlqi48VdX2UKGgGR0CNPN8m8dxRaAdN6ANoCEdAqprxTVDrq3V9lChoBkdAlNRES26TXGgHTegDaAhHQKqeK6jnFHd1fZQoaAZHQJUWNZ7ojfNoB03oA2gIR0CqpCG8274BdX2UKGgGR0CVSEmr8zhxaAdN6ANoCEdAqqbdn7Hhj3V9lChoBkdAkPvpXZGrj2gHTegDaAhHQKqoRuDSPU91fZQoaAZHQJXHXaL4vexoB03oA2gIR0Cqq6f7JnxsdX2UKGgGR0CQwdXvH93saAdN6ANoCEdAqrHE3yZrpXV9lChoBkdAkd3QLNOdoWgHTegDaAhHQKq0kgL7XQN1fZQoaAZHQIjEV6gM+eRoB03oA2gIR0CqtgCpFTegdX2UKGgGR0CQvT0elsP8aAdN6ANoCEdAqrlJbOeJ53V9lChoBkdAk3wwtz0Yj2gHTegDaAhHQKq/i56MR6F1fZQoaAZHQJC3VbHIZIhoB03oA2gIR0CqwluRs/IKdX2UKGgGR0CUIStihFmWaAdN6ANoCEdAqsPJq46OpHV9lChoBkdAjtpOogmqpGgHTegDaAhHQKrHGTNdJJ51fZQoaAZHQJXL4P+XJHRoB03oA2gIR0CqzT1KwpvxdX2UKGgGR0CUIlIldC3PaAdN6ANoCEdAqtALns9jgHV9lChoBkdAljAsbNr0rmgHTegDaAhHQKrRkntOVPh1fZQoaAZHQJVMjIOpbUxoB03oA2gIR0Cq1NHkT6BRdX2UKGgGR0CXH1wDvE0jaAdN6ANoCEdAqtsAG2TgVHV9lChoBkdAmSCY4yXUpmgHTegDaAhHQKrd0jgydnV1fZQoaAZHQJQsNcqvvBtoB03oA2gIR0Cq3z3b/Ot5dX2UKGgGR0CR3H6MBIWhaAdN6ANoCEdAquKSXa8HwHV9lChoBkdAir4zZQHiWGgHTegDaAhHQKrozehPCVN1fZQoaAZHQJWUsnAqNIdoB03oA2gIR0Cq66LFOwgUdX2UKGgGR0CWNwt16mfoaAdN6ANoCEdAqu0XKr7wa3V9lChoBkdAktKfsu3+dmgHTegDaAhHQKrwZ+CK77N1fZQoaAZHQJUan+JgsshoB03oA2gIR0Cq9oULUkOadX2UKGgGR0CRdaE4NqgzaAdN6ANoCEdAqvlco8ZDRnV9lChoBkdAjzjnIyTINmgHTegDaAhHQKr6y8gZCOZ1fZQoaAZHQJcWWMyad+ZoB03oA2gIR0Cq/hOxbB42dX2UKGgGR0CUsRznA6+4aAdN6ANoCEdAqwRqDZlFt3V9lChoBkdAk7FN29tdiWgHTegDaAhHQKsHSsV+I/J1fZQoaAZHQJQ7d9Cu2Z1oB03oA2gIR0CrCL+4LCvYdX2UKGgGR0CA+fczImw8aAdN6ANoCEdAqwwcR15jY3V9lChoBkdAlTFZjYqXnmgHTegDaAhHQKsScoDPnjh1fZQoaAZHQJXGpSIgvDhoB03oA2gIR0CrFUqG1x82dX2UKGgGR0CAj1dYW+GoaAdN6ANoCEdAqxa0TN+so3V9lChoBkdAkOC9ZvDP4WgHTegDaAhHQKsaGkMTewd1fZQoaAZHQJMKTSMLncNoB03oA2gIR0CrIFUzj3mFdX2UKGgGR0CVorWgOBlMaAdN6ANoCEdAqyMkKVpsXXV9lChoBkdAlQrXVTaTOmgHTegDaAhHQKski24NI9V1fZQoaAZHQJLHIPczqKRoB03oA2gIR0CrJ9ooE0SAdX2UKGgGR0CWllO8TSLJaAdN6ANoCEdAqy4Ye7tiQXV9lChoBkdAlvEtIGyHEmgHTegDaAhHQKsw7pyIYWN1fZQoaAZHQITO3+OwPiFoB03oA2gIR0CrMmBew9q2dX2UKGgGR0CU6sUVBUrDaAdN6ANoCEdAqzXFNahYeXV9lChoBkdAlmyIPsiSq2gHTegDaAhHQKs7+nk1dgR1fZQoaAZHQJYEBMi8nNRoB03oA2gIR0CrPslpXZGsdX2UKGgGR0CXgymlImPYaAdN6ANoCEdAq0A3+ERJ3HV9lChoBkdAf9RK28Zk1GgHTegDaAhHQKtDjikwevJ1fZQoaAZHQI+HQ2GZeAxoB03oA2gIR0CrSeowdsBRdX2UKGgGR0CUhnYZEUj+aAdN6ANoCEdAq0zJnxri2nV9lChoBkdAkGNvP5YYBWgHTegDaAhHQKtONXmNiph1fZQoaAZHQJPqARL9MsZoB03oA2gIR0CrUY7Q1JlKdX2UKGgGR0CXF3bGWD6FaAdN6ANoCEdAq1essxwhn3V9lChoBkdAjPyZOSGJvmgHTegDaAhHQKtahpi7TUl1fZQoaAZHQJR6yfTTfBNoB03oA2gIR0CrW/fIKc/ddX2UKGgGR0CZioQL/jsEaAdN6ANoCEdAq19C/CZWrHV9lChoBkdAmSUHhKlHjWgHTegDaAhHQKtlcMvysjp1fZQoaAZHQIek1LxqfvpoB03oA2gIR0CraDXumaYvdX2UKGgGR0CYt48qnWJ8aAdN6ANoCEdAq2miExqO93V9lChoBkdAmJsCPyTY/WgHTegDaAhHQKts55C4SYh1fZQoaAZHQJghmQ1aW5ZoB03oA2gIR0CrcxXEZR8/dX2UKGgGR0CU2bbjLjgiaAdN6ANoCEdAq3XmPgeijHV9lChoBkdAmPgHrleWwGgHTegDaAhHQKt3UGOdXkp1fZQoaAZHQJgPD5aePJdoB03oA2gIR0CrepV27nPndX2UKGgGR0CX15Uvf0mMaAdN6ANoCEdAq4DJOtW+5HV9lChoBkdAlntCWAwwkGgHTegDaAhHQKuDlrcj7hx1fZQoaAZHQJgmMOc2BJ9oB03oA2gIR0CrhP6s6q82dX2UKGgGR0CXqHnwXqJNaAdN6ANoCEdAq4hvlbNbDHV9lChoBkdAljF6Y/mknGgHTegDaAhHQKuOiZ7Xxvx1fZQoaAZHQJiBC23KB/ZoB03oA2gIR0CrkWQsXizcdX2UKGgGR0CX9S3qiXY2aAdN6ANoCEdAq5LJE2HclHV9lChoBkdAkzbAumJm/WgHTegDaAhHQKuWFWmP5pJ1fZQoaAZHQJh4H3K0UoNoB03oA2gIR0CrnDvhZQpGdX2UKGgGR0CVQwtdRiw0aAdN6ANoCEdAq58RwyZa3nV9lChoBkdAkxcPWMCLdmgHTegDaAhHQKuggXk5p8F1fZQoaAZHQIkup4fOlftoB03oA2gIR0Cro+XIEKVqdX2UKGgGR0B6623I+4b0aAdN6ANoCEdAq6pNpblijXV9lChoBkdAiQ5iLdepoGgHTegDaAhHQKutNv3JxNt1fZQoaAZHQIBfEIkZ75VoB03oA2gIR0CrrrR1HOKPdX2UKGgGR0CHPPfEXLvDaAdN6ANoCEdAq7IeN1hb4nV9lChoBkdAjOIU65oXbmgHTegDaAhHQKu4ZZ7HAAR1fZQoaAZHQJIh0WP91lpoB03oA2gIR0Cru0Ev9LpSdX2UKGgGR0B7NKQfZElWaAdN6ANoCEdAq7y7b5/LDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (977 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1001.5897993177641, "std_reward": 207.55808389612662, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-13T14:59:01.930438"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:676124a0f65c9e86ccae4deb50149c2f03d9ffec7ba837cb0f5f6be434c37125
|
3 |
+
size 2763
|