PPO-LunarLander-v2 / config.json
jcgarciaca's picture
Upload PPO LunarLander-v2 trained agent
1757722
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f01447a7290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f01447a7320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f01447a73b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f01447a7440>", "_build": "<function ActorCriticPolicy._build at 0x7f01447a74d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f01447a7560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f01447a75f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f01447a7680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f01447a7710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f01447a77a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f01447a7830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f01447eea20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653404711.486982, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmiQFva4bgLrRYpY7pu7xNh87Izue/qu6AACAPwAAgD8zXbG8G5bFPSYOMT59wIe+sBmLPGW1PzsAAAAAAAAAAJqmM73DtWe4mI8xus/FlzUGZFA49pVQOQAAgD8AAIA/gJWYPfasL7qt7e+6/wMBtjmvgbpCaAo6AAAAAAAAgD8AwAc6H03auap4KLqEUFM24kSJOmKqQTkAAIA/AACAPxpLlL2Tqb4/MYUvv5Z8az6lNBK7Js8hvgAAAAAAAAAAZiLxuxQgorrw7u06+sWINeNvmLmoMge6AACAPwAAgD/NaNq7e+aGuv5Tmrs8z104fhyHOnsBezgAAIA/AACAP4YTNb5PVJo/hNK9vnu3qL6r3SG+a45zOwAAAAAAAAAAZkxAvSkQZLp+Zjo6EUh7NgXulDozrFq5AACAPwAAgD+al4S9uCbUuRZszLqAxqk0bAmJu7ac8TkAAIA/AACAP405wb3DcX66eSwOuGo2Q7OkE4M6qqwhNwAAgD8AAIA/AN1KvSn4QrqwKFi6333UtUVQL7o223o5AACAPwAAgD+auR87cbVIu0nPQbwnn5M8VPlTvIqifT0AAIA/AACAP3Nh0r2FE+m5OvOguJs9FzRd0ZO5m7y5NwAAgD8AAIA/ZhCHvCm4OrqbSZG6jI+stch/bzqUQKk5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj1a1pKPnYUCUhpRSlIwBbJRN6AOMAXSUR0CvMKE2P1cudX2UKGgGaAloD0MIvM/x0eLXY0CUhpRSlGgVTegDaBZHQK8yKgzP8ht1fZQoaAZoCWgPQwiqu7ILhoBhQJSGlFKUaBVN6ANoFkdArzKA73fygHV9lChoBmgJaA9DCD7QCgxZ5llAlIaUUpRoFU3oA2gWR0CvOb5Wq95AdX2UKGgGaAloD0MIJxb4im6vYkCUhpRSlGgVTegDaBZHQK86CAq/dqN1fZQoaAZoCWgPQwgCmggbnllpQJSGlFKUaBVN6ANoFkdArzoziKiwjnV9lChoBmgJaA9DCIzyzMvh7GRAlIaUUpRoFU3oA2gWR0CvO2EXDWK/dX2UKGgGaAloD0MIVYhH4uXsY0CUhpRSlGgVTegDaBZHQK88nh4MWoF1fZQoaAZoCWgPQwh3g2itaFVmQJSGlFKUaBVN6ANoFkdArz9xky1uznV9lChoBmgJaA9DCEX2QZYFm0pAlIaUUpRoFUu6aBZHQK9Bf+EytV91fZQoaAZoCWgPQwiwIM1YtDxgQJSGlFKUaBVN6ANoFkdAr0JGnn+yaHV9lChoBmgJaA9DCHtNDwpKz2NAlIaUUpRoFU3oA2gWR0CvQsBE8aGYdX2UKGgGaAloD0MI6Iam7PQfY0CUhpRSlGgVTegDaBZHQK9Fb889wFV1fZQoaAZoCWgPQwhd4PJYM/BlQJSGlFKUaBVN6ANoFkdAr0Zcc6vJR3V9lChoBmgJaA9DCGiXb33Y/2VAlIaUUpRoFU3oA2gWR0CvRwAF5fMOdX2UKGgGaAloD0MI/RUyV4a8ZkCUhpRSlGgVTegDaBZHQK9ITCfHxSZ1fZQoaAZoCWgPQwg+srlqHt9iQJSGlFKUaBVN6ANoFkdAr0lJo4+8oXV9lChoBmgJaA9DCAcI5ujxZWNAlIaUUpRoFU3oA2gWR0CvSvAp8WsSdX2UKGgGaAloD0MITioaa3+AY0CUhpRSlGgVTegDaBZHQK9Me/XXiBJ1fZQoaAZoCWgPQwjCFrt9VoZjQJSGlFKUaBVN6ANoFkdAr0zUSRKYiXV9lChoBmgJaA9DCKlnQSjvxGdAlIaUUpRoFU3oA2gWR0CvVC2bgCOndX2UKGgGaAloD0MISKgZUkVHZkCUhpRSlGgVTegDaBZHQK9UcWMS9M91fZQoaAZoCWgPQwgbnfNTnDFkQJSGlFKUaBVN6ANoFkdAr1SZnQID5nV9lChoBmgJaA9DCLLyy2AMtWdAlIaUUpRoFU3oA2gWR0CvVakzoEB9dX2UKGgGaAloD0MImngHeNKrYkCUhpRSlGgVTegDaBZHQK9Zk5FPSD11fZQoaAZoCWgPQwjLaOTzCsxlQJSGlFKUaBVN6ANoFkdAr1uSUkfLcXV9lChoBmgJaA9DCCgn2lVIGFxAlIaUUpRoFU3oA2gWR0CvXFvPszEadX2UKGgGaAloD0MIcOtunuqiZECUhpRSlGgVTegDaBZHQK9c2nBLwnZ1fZQoaAZoCWgPQwjkDwae+3FgQJSGlFKUaBVN6ANoFkdAr1+D7ZWaMXV9lChoBmgJaA9DCNfAVgnWsnBAlIaUUpRoFU16A2gWR0CvX4u+ZgG9dX2UKGgGaAloD0MIU+xoHOppX0CUhpRSlGgVTegDaBZHQK9gYBgeA/d1fZQoaAZoCWgPQwh0CYfe4glkQJSGlFKUaBVN6ANoFkdAr2DowsXiznV9lChoBmgJaA9DCBUdyeU/QD1AlIaUUpRoFUvlaBZHQK9hM3MINVl1fZQoaAZoCWgPQwi6FcJqrFZjQJSGlFKUaBVN6ANoFkdAr2LTIgeRxXV9lChoBmgJaA9DCAsm/ijq5GFAlIaUUpRoFU3oA2gWR0Cvkny1Vo6CdX2UKGgGaAloD0MIVhADXXvkZECUhpRSlGgVTegDaBZHQK+T/VawD/51fZQoaAZoCWgPQwi8H7dfvt5lQJSGlFKUaBVN6ANoFkdAr5RR9XtBwHV9lChoBmgJaA9DCLsqUItBomdAlIaUUpRoFU3oA2gWR0Cvm6K77Kq5dX2UKGgGaAloD0MI4jycwHSXZECUhpRSlGgVTegDaBZHQK+b5xMnJDF1fZQoaAZoCWgPQwg4LuOmhj5kQJSGlFKUaBVN6ANoFkdAr5wPoHLRr3V9lChoBmgJaA9DCBnkLsIUhGdAlIaUUpRoFU3oA2gWR0CvnTD1oQFtdX2UKGgGaAloD0MIi415HXG1XkCUhpRSlGgVTegDaBZHQK+hbgXuVop1fZQoaAZoCWgPQwhDG4ANiKFiQJSGlFKUaBVN6ANoFkdAr6Rj1Iy0r3V9lChoBmgJaA9DCOLIA5HFoWNAlIaUUpRoFU3oA2gWR0CvpO6o2n89dX2UKGgGaAloD0MI1xUzwttlZ0CUhpRSlGgVTegDaBZHQK+n8PH1e0J1fZQoaAZoCWgPQwinsijsoiJlQJSGlFKUaBVN6ANoFkdAr6f6DbrTpnV9lChoBmgJaA9DCHv4MlEES3FAlIaUUpRoFU2lA2gWR0CvqCWTxG2DdX2UKGgGaAloD0MIls6HZ4mBZECUhpRSlGgVTegDaBZHQK+o4V2zOX51fZQoaAZoCWgPQwjzWgndpUxlQJSGlFKUaBVN6ANoFkdAr6l/TG5tnHV9lChoBmgJaA9DCLjOv132EWNAlIaUUpRoFU3oA2gWR0Cvq7nGbTc7dX2UKGgGaAloD0MIeQd40sIuZECUhpRSlGgVTegDaBZHQK+tbW7voeR1fZQoaAZoCWgPQwiwrZ/+sxY5QJSGlFKUaBVL1GgWR0CvrjvgvUSadX2UKGgGaAloD0MIzJvDtdpmXUCUhpRSlGgVTegDaBZHQK+u/fDUExJ1fZQoaAZoCWgPQwiazk4Gx91lQJSGlFKUaBVN6ANoFkdAr69crGza9XV9lChoBmgJaA9DCEpCIm2jhXBAlIaUUpRoFU2wAWgWR0Cvr7hvitJWdX2UKGgGaAloD0MIU1ipoCLLZECUhpRSlGgVTegDaBZHQK+200waisZ1fZQoaAZoCWgPQwjEsplDUqVkQJSGlFKUaBVN6ANoFkdAr7cacTakAXV9lChoBmgJaA9DCFNYqaCi2WRAlIaUUpRoFU3oA2gWR0Cvt0i3G4qgdX2UKGgGaAloD0MI+prlstHRYUCUhpRSlGgVTegDaBZHQK+4epaRp111fZQoaAZoCWgPQwi9GTVfJUJkQJSGlFKUaBVN6ANoFkdAr70K6g/Ts3V9lChoBmgJaA9DCCQPRBbp92BAlIaUUpRoFU3oA2gWR0CvwNO7QLNOdX2UKGgGaAloD0MITWa8rTROckCUhpRSlGgVTXoDaBZHQK/A8uzyBkJ1fZQoaAZoCWgPQwgWokPgyHhjQJSGlFKUaBVN6ANoFkdAr8QbEgntwHV9lChoBmgJaA9DCNP4hVcSKmVAlIaUUpRoFU3oA2gWR0CvxCPU8V59dX2UKGgGaAloD0MIGavN/yv2YUCUhpRSlGgVTegDaBZHQK/F4cEvCdl1fZQoaAZoCWgPQwitwfuqXIlkQJSGlFKUaBVN6ANoFkdAr8hpcVxjrnV9lChoBmgJaA9DCFqD91W5i2dAlIaUUpRoFU3oA2gWR0Cv+IcNYr8SdX2UKGgGaAloD0MIZHPVPEfaZ0CUhpRSlGgVTegDaBZHQK/5fTdcjaB1fZQoaAZoCWgPQwi5N79hIp1hQJSGlFKUaBVN6ANoFkdAr/pP3rUsnXV9lChoBmgJaA9DCAyyZfk6rmRAlIaUUpRoFU3oA2gWR0Cv+rcqOLiudX2UKGgGaAloD0MI8+ZwrfYQcECUhpRSlGgVTRUCaBZHQK/7ACU5dW11fZQoaAZoCWgPQwh9IeS8f2ljQJSGlFKUaBVN6ANoFkdAr/sZXIU8FXV9lChoBmgJaA9DCIQSZtr+TnBAlIaUUpRoFU1jA2gWR0Cv/itnXd0rdX2UKGgGaAloD0MIdzBinwDTZkCUhpRSlGgVTegDaBZHQLABCkWhysF1fZQoaAZoCWgPQwg/xAYLp85kQJSGlFKUaBVN6ANoFkdAsAEfevZAZHV9lChoBmgJaA9DCNb/OcyX2GFAlIaUUpRoFU3oA2gWR0CwAaxKcurZdX2UKGgGaAloD0MIO8PUljrhZUCUhpRSlGgVTegDaBZHQLAFMIdELIB1fZQoaAZoCWgPQwh+4CpPILFiQJSGlFKUaBVN6ANoFkdAsAU92ovSMXV9lChoBmgJaA9DCMbf9gSJvGdAlIaUUpRoFU3oA2gWR0CwBm/NiYsvdX2UKGgGaAloD0MIq1yo/GsWY0CUhpRSlGgVTegDaBZHQLAGcrtVrAR1fZQoaAZoCWgPQwjk9zb92f1jQJSGlFKUaBVN6ANoFkdAsAcO5f+junV9lChoBmgJaA9DCC4dc54xO21AlIaUUpRoFU2QA2gWR0CwBxLqlgtwdX2UKGgGaAloD0MI205bIwIfZkCUhpRSlGgVTegDaBZHQLAImYIjW091fZQoaAZoCWgPQwgIILWJE1ZlQJSGlFKUaBVN6ANoFkdAsAj1KNAC4nV9lChoBmgJaA9DCGTpQxfUi0RAlIaUUpRoFUvVaBZHQLAJPVpblil1fZQoaAZoCWgPQwiJsUy/RHdnQJSGlFKUaBVN6ANoFkdAsAlJZid8RnV9lChoBmgJaA9DCL+aAwTzlmRAlIaUUpRoFU3oA2gWR0CwCW1wtJ4CdX2UKGgGaAloD0MIYJFfP0R+YUCUhpRSlGgVTegDaBZHQLAJimwJPZZ1fZQoaAZoCWgPQwjnj2ltGsZkQJSGlFKUaBVN6ANoFkdAsAmTsw+MZXV9lChoBmgJaA9DCNb/OcyXBmFAlIaUUpRoFU3oA2gWR0CwCreF6AvtdX2UKGgGaAloD0MIca/MW3UPZ0CUhpRSlGgVTegDaBZHQLAMWI7vG6x1fZQoaAZoCWgPQwjHKTqSSxxnQJSGlFKUaBVN6ANoFkdAsAxq4H5aeXV9lChoBmgJaA9DCHDP86eNNGBAlIaUUpRoFU3oA2gWR0CwDO9UCJXRdX2UKGgGaAloD0MI1ub/VUeCZECUhpRSlGgVTegDaBZHQLARBohY/3Z1fZQoaAZoCWgPQwiBPSZSmuZkQJSGlFKUaBVN6ANoFkdAsBEWfSQYDXV9lChoBmgJaA9DCGST/Ijfl2JAlIaUUpRoFU3oA2gWR0CwEqDg/C66dX2UKGgGaAloD0MI5Z1DGSqeZkCUhpRSlGgVTegDaBZHQLASpLoOhCd1fZQoaAZoCWgPQwhJu9HH/A1lQJSGlFKUaBVN6ANoFkdAsBOFAHE/B3V9lChoBmgJaA9DCA7z5QVYFGFAlIaUUpRoFU3oA2gWR0CwFcgcxTKldX2UKGgGaAloD0MILGLYYcyvaECUhpRSlGgVTegDaBZHQLAWQI0ZWJd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}