|
from train import train_model |
|
import os |
|
from tqdm import tqdm |
|
|
|
EXPERIMENT_DIRECTORY = "runs/code-decoder-v22-bigset-tuner" |
|
EPOCHS = 10 |
|
|
|
hyperparam_sets = [ |
|
{"name": "tiny", "heads": 2, "dim": 128, "layers": 2}, |
|
{"name": "medium", "heads": 4, "dim": 256, "layers": 4}, |
|
{"name": "more_heads", "heads": 8, "dim": 256, "layers": 4}, |
|
{"name": "smalldim", "heads": 4, "dim": 128, "layers": 4}, |
|
{"name": "deep_smalldim", "heads": 4, "dim": 128, "layers": 8}, |
|
{"name": "bigdim", "heads": 4, "dim": 512, "layers": 4}, |
|
{"name": "deeper", "heads": 4, "dim": 256, "layers": 8}, |
|
{"name": "big_deeper", "heads": 4, "dim": 512, "layers": 8}, |
|
{"name": "medium_drop", "heads": 4, "dim": 256, "layers": 4, "drop": 0.3}, |
|
{"name": "bigdim_drop", "heads": 4, "dim": 512, "layers": 4, "drop": 0.3}, |
|
] |
|
|
|
|
|
for config in (pbar := tqdm(hyperparam_sets, dynamic_ncols=True)): |
|
pbar.set_description(f"Config {config['name']}") |
|
|
|
|
|
cleaned_config = {k: v for k, v in config.items() if k != "name"} |
|
|
|
train_model( |
|
os.path.join(EXPERIMENT_DIRECTORY, f"CONFIG_{config['name']}"), |
|
EPOCHS, |
|
cleaned_config, |
|
) |
|
|
|
os.system("bash safe_cleanup.sh") |
|
|