|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
DIM = 128 |
|
print(f"DIM IS SET TO {DIM}") |
|
|
|
DEVICE = "mps" if torch.backends.mps.is_available() else "cpu" |
|
|
|
|
|
class MHA_SelfAttention(nn.Module): |
|
def __init__(self, embed_dim=DIM, num_heads=1, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
if num_heads != 8: |
|
print( |
|
"Num heads is not 8. This is a reminder to change this back after experimenting with smaller architectures" |
|
) |
|
self.mha = nn.MultiheadAttention(embed_dim, num_heads) |
|
self.num_heads = num_heads |
|
|
|
def forward(self, x, mask=None, triangle_mask=False): |
|
|
|
|
|
attn_mask = None |
|
seq_len = x.size(1) |
|
|
|
if triangle_mask: |
|
attn_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1) == 0 |
|
attn_mask = attn_mask.to(x.device) |
|
|
|
if mask is not None: |
|
if attn_mask is not None: |
|
attn_mask = mask.unsqueeze(1) & attn_mask.unsqueeze(0) |
|
else: |
|
attn_mask = mask.unsqueeze(1).expand(-1, seq_len, -1) |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.repeat(self.num_heads, 1, 1).float() |
|
attn_mask = attn_mask.masked_fill( |
|
~attn_mask.bool(), -1e9 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
|
|
attn_output, _ = self.mha(x, x, x, attn_mask=attn_mask) |
|
attn_output = attn_output.transpose(0, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return attn_output |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim=DIM, hidden_dim=None, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.dim = dim |
|
self.hidden_dim = hidden_dim if hidden_dim is not None else dim |
|
|
|
self.block = nn.Sequential( |
|
nn.LayerNorm(self.dim), |
|
nn.Linear(self.dim, self.hidden_dim), |
|
nn.GELU(), |
|
nn.Linear(self.hidden_dim, self.dim), |
|
nn.GELU(), |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.sa = MHA_SelfAttention() |
|
self.block = FeedForward() |
|
|
|
|
|
|
|
def forward(self, x, padding_mask=None): |
|
res_x = x |
|
x = self.sa(x, mask=padding_mask, triangle_mask=True) |
|
|
|
|
|
x = x + res_x |
|
|
|
res_x_2 = x |
|
x = self.block(x) |
|
|
|
x = x + res_x_2 |
|
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, max_len=5000): |
|
super().__init__() |
|
position = torch.arange(0, max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, DIM, 2) * -(np.log(10000.0) / DIM)) |
|
pe = torch.zeros(max_len, DIM) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer("pe", pe.unsqueeze(0)) |
|
|
|
def forward(self, x): |
|
seq_len = x.size(1) |
|
return x + self.pe[:, :seq_len, :].to(x.device) |
|
|
|
|
|
class DecoderTransformer(nn.Module): |
|
def __init__(self, num_blocks=6, vocab_size=100, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
if vocab_size == 100: |
|
print( |
|
"WARNING: vocab_size is set to 100. You probably mean to set it to something else. Comment out the exit line below if this was intentional" |
|
) |
|
exit() |
|
|
|
self.num_blocks = num_blocks |
|
self.decoders = nn.ModuleList([DecoderBlock() for _ in range(num_blocks)]) |
|
self.pos_encoding = PositionalEncoding() |
|
self.enc_embedding = nn.Embedding(vocab_size, DIM) |
|
|
|
self.oblock = nn.Sequential( |
|
nn.Linear(DIM, vocab_size), |
|
|
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def _initialize_weights(m): |
|
if hasattr(m, "weight") and m.weight.dim() > 1: |
|
nn.init.kaiming_uniform_(m.weight.data) |
|
|
|
self.apply(_initialize_weights) |
|
|
|
print( |
|
f"Model initialized with {sum(p.numel() for p in self.parameters() if p.requires_grad)} params." |
|
) |
|
|
|
def forward(self, x, padding_mask=None): |
|
|
|
|
|
if isinstance(x, tuple): |
|
x, padding_mask = x |
|
|
|
if padding_mask is not None: |
|
padding_mask = padding_mask == 0 |
|
|
|
x = self.pos_encoding(self.enc_embedding(x)) |
|
|
|
|
|
|
|
|
|
for didx, dblock in enumerate(self.decoders): |
|
|
|
x = dblock(x, padding_mask=padding_mask) |
|
|
|
x = self.oblock(x) |
|
|
|
return x |
|
|