Commit
•
ef15707
1
Parent(s):
e349e43
Update handler.py
Browse files- handler.py +108 -38
handler.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Dict, Any, Union, Optional
|
2 |
import torch
|
3 |
from diffusers import LTXPipeline, LTXImageToVideoPipeline
|
4 |
from PIL import Image
|
@@ -15,6 +15,19 @@ logging.basicConfig(level=logging.INFO)
|
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
class EndpointHandler:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def __init__(self, path: str = ""):
|
19 |
"""Initialize the LTX Video handler with both text-to-video and image-to-video pipelines.
|
20 |
|
@@ -35,11 +48,55 @@ class EndpointHandler:
|
|
35 |
# Enable memory optimizations
|
36 |
self.text_to_video.enable_model_cpu_offload()
|
37 |
self.image_to_video.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
self.fps = 24
|
41 |
|
42 |
-
def _create_video_file(self, frames: torch.Tensor, fps: int =
|
43 |
"""Convert frames to an MP4 video file.
|
44 |
|
45 |
Args:
|
@@ -50,11 +107,11 @@ class EndpointHandler:
|
|
50 |
bytes: MP4 video file content
|
51 |
"""
|
52 |
# Log frame information
|
53 |
-
num_frames = frames.shape[1]
|
54 |
duration = num_frames / fps
|
55 |
logger.info(f"Creating video with {num_frames} frames at {fps} FPS (duration: {duration:.2f} seconds)")
|
56 |
|
57 |
-
# Convert tensor to numpy array
|
58 |
video_np = frames.squeeze(0).permute(0, 2, 3, 1).cpu().float().numpy()
|
59 |
video_np = (video_np * 255).astype(np.uint8)
|
60 |
|
@@ -68,8 +125,7 @@ class EndpointHandler:
|
|
68 |
try:
|
69 |
# Create video clip and write to file
|
70 |
clip = ImageSequenceClip(list(video_np), fps=fps)
|
71 |
-
|
72 |
-
resized.write_videofile(output_path, codec="libx264", audio=False)
|
73 |
|
74 |
# Read the video file
|
75 |
with open(output_path, "rb") as f:
|
@@ -93,60 +149,66 @@ class EndpointHandler:
|
|
93 |
data (Dict[str, Any]): Input data containing:
|
94 |
- prompt (str): Text description for video generation
|
95 |
- image (Optional[str]): Base64 encoded image for image-to-video generation
|
96 |
-
-
|
|
|
|
|
97 |
- fps (Optional[int]): Frames per second (default: 24)
|
|
|
98 |
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
|
99 |
-
- num_inference_steps (Optional[int]): Number of inference steps (default: 50)
|
100 |
|
101 |
Returns:
|
102 |
Dict[str, Any]: Dictionary containing:
|
103 |
- video: Base64 encoded MP4 video
|
104 |
- content-type: MIME type of the video
|
|
|
105 |
"""
|
106 |
-
# Extract
|
107 |
prompt = data.get("prompt")
|
108 |
if not prompt:
|
109 |
raise ValueError("'prompt' is required in the input data")
|
110 |
|
111 |
-
# Get
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
guidance_scale = data.get("guidance_scale", 7.5)
|
115 |
-
num_inference_steps = data.get("num_inference_steps",
|
116 |
|
117 |
logger.info(f"Generating video with prompt: '{prompt}'")
|
118 |
-
logger.info(f"Parameters:
|
|
|
119 |
|
120 |
-
# Check if image is provided for image-to-video generation
|
121 |
-
image_data = data.get("image")
|
122 |
-
|
123 |
try:
|
124 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if image_data:
|
126 |
# Decode base64 image
|
127 |
image_bytes = base64.b64decode(image_data)
|
128 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
129 |
logger.info("Using image-to-video generation mode")
|
130 |
-
|
131 |
-
|
132 |
-
output = self.image_to_video(
|
133 |
-
prompt=prompt,
|
134 |
-
image=image,
|
135 |
-
num_frames=num_frames,
|
136 |
-
guidance_scale=guidance_scale,
|
137 |
-
num_inference_steps=num_inference_steps,
|
138 |
-
output_type="pt"
|
139 |
-
).frames # Remove [0] to keep all frames
|
140 |
else:
|
141 |
logger.info("Using text-to-video generation mode")
|
142 |
-
|
143 |
-
output = self.text_to_video(
|
144 |
-
prompt=prompt,
|
145 |
-
num_frames=num_frames,
|
146 |
-
guidance_scale=guidance_scale,
|
147 |
-
num_inference_steps=num_inference_steps,
|
148 |
-
output_type="pt"
|
149 |
-
).frames # Remove [0] to keep all frames
|
150 |
|
151 |
# Convert frames to video file
|
152 |
video_content = self._create_video_file(output, fps=fps)
|
@@ -156,7 +218,15 @@ class EndpointHandler:
|
|
156 |
|
157 |
return {
|
158 |
"video": video_base64,
|
159 |
-
"content-type": "video/mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
}
|
161 |
|
162 |
except Exception as e:
|
|
|
1 |
+
from typing import Dict, Any, Union, Optional, Tuple
|
2 |
import torch
|
3 |
from diffusers import LTXPipeline, LTXImageToVideoPipeline
|
4 |
from PIL import Image
|
|
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
class EndpointHandler:
|
18 |
+
# Default configuration
|
19 |
+
DEFAULT_FPS = 24
|
20 |
+
DEFAULT_DURATION = 4 # seconds
|
21 |
+
DEFAULT_NUM_FRAMES = (DEFAULT_DURATION * DEFAULT_FPS) + 1 # 97 frames
|
22 |
+
DEFAULT_NUM_STEPS = 25
|
23 |
+
DEFAULT_WIDTH = 768
|
24 |
+
DEFAULT_HEIGHT = 512
|
25 |
+
|
26 |
+
# Constraints
|
27 |
+
MAX_WIDTH = 1280
|
28 |
+
MAX_HEIGHT = 720
|
29 |
+
MAX_FRAMES = 257
|
30 |
+
|
31 |
def __init__(self, path: str = ""):
|
32 |
"""Initialize the LTX Video handler with both text-to-video and image-to-video pipelines.
|
33 |
|
|
|
48 |
# Enable memory optimizations
|
49 |
self.text_to_video.enable_model_cpu_offload()
|
50 |
self.image_to_video.enable_model_cpu_offload()
|
51 |
+
|
52 |
+
def _validate_and_adjust_resolution(self, width: int, height: int) -> Tuple[int, int]:
|
53 |
+
"""Validate and adjust resolution to meet constraints.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
width (int): Requested width
|
57 |
+
height (int): Requested height
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
Tuple[int, int]: Adjusted (width, height)
|
61 |
+
"""
|
62 |
+
# Round to nearest multiple of 32
|
63 |
+
width = round(width / 32) * 32
|
64 |
+
height = round(height / 32) * 32
|
65 |
+
|
66 |
+
# Enforce maximum dimensions
|
67 |
+
width = min(width, self.MAX_WIDTH)
|
68 |
+
height = min(height, self.MAX_HEIGHT)
|
69 |
+
|
70 |
+
# Enforce minimum dimensions
|
71 |
+
width = max(width, 32)
|
72 |
+
height = max(height, 32)
|
73 |
+
|
74 |
+
return width, height
|
75 |
+
|
76 |
+
def _validate_and_adjust_frames(self, num_frames: Optional[int] = None, fps: Optional[int] = None) -> Tuple[int, int]:
|
77 |
+
"""Validate and adjust frame count and FPS to meet constraints.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
num_frames (Optional[int]): Requested number of frames
|
81 |
+
fps (Optional[int]): Requested frames per second
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
Tuple[int, int]: Adjusted (num_frames, fps)
|
85 |
+
"""
|
86 |
+
# Use defaults if not provided
|
87 |
+
fps = fps or self.DEFAULT_FPS
|
88 |
+
num_frames = num_frames or self.DEFAULT_NUM_FRAMES
|
89 |
+
|
90 |
+
# Adjust frames to be in format 8k + 1
|
91 |
+
k = (num_frames - 1) // 8
|
92 |
+
num_frames = (k * 8) + 1
|
93 |
+
|
94 |
+
# Enforce maximum frame count
|
95 |
+
num_frames = min(num_frames, self.MAX_FRAMES)
|
96 |
|
97 |
+
return num_frames, fps
|
|
|
98 |
|
99 |
+
def _create_video_file(self, frames: torch.Tensor, fps: int = DEFAULT_FPS) -> bytes:
|
100 |
"""Convert frames to an MP4 video file.
|
101 |
|
102 |
Args:
|
|
|
107 |
bytes: MP4 video file content
|
108 |
"""
|
109 |
# Log frame information
|
110 |
+
num_frames = frames.shape[1]
|
111 |
duration = num_frames / fps
|
112 |
logger.info(f"Creating video with {num_frames} frames at {fps} FPS (duration: {duration:.2f} seconds)")
|
113 |
|
114 |
+
# Convert tensor to numpy array
|
115 |
video_np = frames.squeeze(0).permute(0, 2, 3, 1).cpu().float().numpy()
|
116 |
video_np = (video_np * 255).astype(np.uint8)
|
117 |
|
|
|
125 |
try:
|
126 |
# Create video clip and write to file
|
127 |
clip = ImageSequenceClip(list(video_np), fps=fps)
|
128 |
+
clip.write_videofile(output_path, codec="libx264", audio=False)
|
|
|
129 |
|
130 |
# Read the video file
|
131 |
with open(output_path, "rb") as f:
|
|
|
149 |
data (Dict[str, Any]): Input data containing:
|
150 |
- prompt (str): Text description for video generation
|
151 |
- image (Optional[str]): Base64 encoded image for image-to-video generation
|
152 |
+
- width (Optional[int]): Video width (default: 768)
|
153 |
+
- height (Optional[int]): Video height (default: 512)
|
154 |
+
- num_frames (Optional[int]): Number of frames (default: 97)
|
155 |
- fps (Optional[int]): Frames per second (default: 24)
|
156 |
+
- num_inference_steps (Optional[int]): Number of inference steps (default: 25)
|
157 |
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
|
|
|
158 |
|
159 |
Returns:
|
160 |
Dict[str, Any]: Dictionary containing:
|
161 |
- video: Base64 encoded MP4 video
|
162 |
- content-type: MIME type of the video
|
163 |
+
- metadata: Dictionary with actual values used for generation
|
164 |
"""
|
165 |
+
# Extract and validate prompt
|
166 |
prompt = data.get("prompt")
|
167 |
if not prompt:
|
168 |
raise ValueError("'prompt' is required in the input data")
|
169 |
|
170 |
+
# Get and validate resolution
|
171 |
+
width = data.get("width", self.DEFAULT_WIDTH)
|
172 |
+
height = data.get("height", self.DEFAULT_HEIGHT)
|
173 |
+
width, height = self._validate_and_adjust_resolution(width, height)
|
174 |
+
|
175 |
+
# Get and validate frames and FPS
|
176 |
+
num_frames = data.get("num_frames", self.DEFAULT_NUM_FRAMES)
|
177 |
+
fps = data.get("fps", self.DEFAULT_FPS)
|
178 |
+
num_frames, fps = self._validate_and_adjust_frames(num_frames, fps)
|
179 |
+
|
180 |
+
# Get other parameters with defaults
|
181 |
guidance_scale = data.get("guidance_scale", 7.5)
|
182 |
+
num_inference_steps = data.get("num_inference_steps", self.DEFAULT_NUM_STEPS)
|
183 |
|
184 |
logger.info(f"Generating video with prompt: '{prompt}'")
|
185 |
+
logger.info(f"Parameters: size={width}x{height}, num_frames={num_frames}, fps={fps}")
|
186 |
+
logger.info(f"Additional params: guidance_scale={guidance_scale}, num_inference_steps={num_inference_steps}")
|
187 |
|
|
|
|
|
|
|
188 |
try:
|
189 |
with torch.no_grad():
|
190 |
+
generation_kwargs = {
|
191 |
+
"prompt": prompt,
|
192 |
+
"height": height,
|
193 |
+
"width": width,
|
194 |
+
"num_frames": num_frames,
|
195 |
+
"guidance_scale": guidance_scale,
|
196 |
+
"num_inference_steps": num_inference_steps,
|
197 |
+
"output_type": "pt"
|
198 |
+
}
|
199 |
+
|
200 |
+
# Check if image is provided for image-to-video generation
|
201 |
+
image_data = data.get("image")
|
202 |
if image_data:
|
203 |
# Decode base64 image
|
204 |
image_bytes = base64.b64decode(image_data)
|
205 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
206 |
logger.info("Using image-to-video generation mode")
|
207 |
+
generation_kwargs["image"] = image
|
208 |
+
output = self.image_to_video(**generation_kwargs).frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
else:
|
210 |
logger.info("Using text-to-video generation mode")
|
211 |
+
output = self.text_to_video(**generation_kwargs).frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
# Convert frames to video file
|
214 |
video_content = self._create_video_file(output, fps=fps)
|
|
|
218 |
|
219 |
return {
|
220 |
"video": video_base64,
|
221 |
+
"content-type": "video/mp4",
|
222 |
+
"metadata": {
|
223 |
+
"width": width,
|
224 |
+
"height": height,
|
225 |
+
"num_frames": num_frames,
|
226 |
+
"fps": fps,
|
227 |
+
"duration": num_frames / fps,
|
228 |
+
"num_inference_steps": num_inference_steps
|
229 |
+
}
|
230 |
}
|
231 |
|
232 |
except Exception as e:
|