Upload handler.py
Browse files- handler.py +67 -69
handler.py
CHANGED
@@ -3,87 +3,88 @@ import os
|
|
3 |
from pathlib import Path
|
4 |
import time
|
5 |
from datetime import datetime
|
6 |
-
import
|
7 |
-
import base64
|
8 |
-
from io import BytesIO
|
9 |
-
|
10 |
from hyvideo.utils.file_utils import save_videos_grid
|
11 |
-
from hyvideo.config import parse_args
|
12 |
from hyvideo.inference import HunyuanVideoSampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class EndpointHandler:
|
15 |
def __init__(self, path: str = ""):
|
16 |
-
"""Initialize the handler with
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
path: Path to the model weights directory
|
20 |
-
"""
|
21 |
-
self.args = parse_args()
|
22 |
models_root_path = Path(path)
|
23 |
if not models_root_path.exists():
|
24 |
raise ValueError(f"`models_root` not exists: {models_root_path}")
|
25 |
|
26 |
-
# Initialize model
|
27 |
self.model = HunyuanVideoSampler.from_pretrained(models_root_path, args=self.args)
|
28 |
|
29 |
-
# Default parameters
|
30 |
-
self.default_params = {
|
31 |
-
"num_inference_steps": 50,
|
32 |
-
"guidance_scale": 1.0,
|
33 |
-
"flow_shift": 7.0,
|
34 |
-
"embedded_guidance_scale": 6.0,
|
35 |
-
"video_length": 129, # 5s
|
36 |
-
"resolution": "1280x720"
|
37 |
-
}
|
38 |
-
|
39 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
40 |
-
"""Process
|
41 |
|
42 |
Args:
|
43 |
-
data: Dictionary containing
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
- flow_shift (float): Flow shift value
|
53 |
-
- embedded_guidance_scale (float): Embedded guidance scale value
|
54 |
|
55 |
Returns:
|
56 |
-
Dictionary containing the base64
|
57 |
"""
|
58 |
-
# Get
|
59 |
prompt = data.pop("inputs", None)
|
60 |
if prompt is None:
|
61 |
raise ValueError("No prompt provided in the 'inputs' field")
|
62 |
-
|
63 |
-
#
|
64 |
-
resolution = data.pop("resolution",
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
#
|
77 |
-
seed = None if seed == -1 else seed
|
78 |
-
|
79 |
-
# Generate video
|
80 |
outputs = self.model.predict(
|
81 |
prompt=prompt,
|
82 |
height=height,
|
83 |
width=width,
|
84 |
video_length=video_length,
|
85 |
seed=seed,
|
86 |
-
negative_prompt="",
|
87 |
infer_steps=num_inference_steps,
|
88 |
guidance_scale=guidance_scale,
|
89 |
num_videos_per_prompt=1,
|
@@ -91,27 +92,24 @@ class EndpointHandler:
|
|
91 |
batch_size=1,
|
92 |
embedded_guidance_scale=embedded_guidance_scale
|
93 |
)
|
94 |
-
|
95 |
-
#
|
96 |
samples = outputs['samples']
|
97 |
sample = samples[0].unsqueeze(0)
|
98 |
-
|
99 |
-
# Save video to temporary file
|
100 |
-
temp_dir = "/tmp/video_output"
|
101 |
-
os.makedirs(temp_dir, exist_ok=True)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
save_videos_grid(sample,
|
106 |
-
|
107 |
# Read video file and convert to base64
|
108 |
-
with open(
|
109 |
video_bytes = f.read()
|
|
|
110 |
video_base64 = base64.b64encode(video_bytes).decode()
|
111 |
-
|
112 |
-
#
|
113 |
-
os.remove(
|
114 |
-
|
115 |
return {
|
116 |
"video_base64": video_base64,
|
117 |
"seed": outputs['seeds'][0],
|
|
|
3 |
from pathlib import Path
|
4 |
import time
|
5 |
from datetime import datetime
|
6 |
+
import argparse
|
|
|
|
|
|
|
7 |
from hyvideo.utils.file_utils import save_videos_grid
|
|
|
8 |
from hyvideo.inference import HunyuanVideoSampler
|
9 |
+
from hyvideo.config import parse_args
|
10 |
+
from hyvideo.constants import NEGATIVE_PROMPT
|
11 |
+
|
12 |
+
def get_default_args():
|
13 |
+
"""Create default arguments instead of parsing from command line"""
|
14 |
+
parser = argparse.ArgumentParser()
|
15 |
+
|
16 |
+
# Add all the arguments that were in the original parser
|
17 |
+
parser.add_argument("--model", type=str, default="HYVideo-T/2")
|
18 |
+
parser.add_argument("--model-resolution", type=str, default="720p", choices=["540p", "720p"])
|
19 |
+
parser.add_argument("--latent-channels", type=int, default=4)
|
20 |
+
parser.add_argument("--precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
|
21 |
+
parser.add_argument("--batch-size", type=int, default=1)
|
22 |
+
parser.add_argument("--infer-steps", type=int, default=50)
|
23 |
+
parser.add_argument("--model-base", type=str, default=None)
|
24 |
+
parser.add_argument("--save-path", type=str, default="outputs")
|
25 |
+
parser.add_argument("--video-length", type=int, default=129) # 5 seconds
|
26 |
+
|
27 |
+
# Parse with empty args list to avoid reading sys.argv
|
28 |
+
args = parser.parse_args([])
|
29 |
+
return args
|
30 |
|
31 |
class EndpointHandler:
|
32 |
def __init__(self, path: str = ""):
|
33 |
+
"""Initialize the handler with model path and default config."""
|
34 |
+
# Use default args instead of parsing from command line
|
35 |
+
self.args = get_default_args()
|
36 |
+
self.args.model_base = path # Use the provided model path
|
37 |
|
38 |
+
# Initialize model
|
|
|
|
|
|
|
39 |
models_root_path = Path(path)
|
40 |
if not models_root_path.exists():
|
41 |
raise ValueError(f"`models_root` not exists: {models_root_path}")
|
42 |
|
|
|
43 |
self.model = HunyuanVideoSampler.from_pretrained(models_root_path, args=self.args)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
46 |
+
"""Process a single request
|
47 |
|
48 |
Args:
|
49 |
+
data: Dictionary containing:
|
50 |
+
- inputs (str): The prompt text
|
51 |
+
- resolution (str, optional): Video resolution like "1280x720"
|
52 |
+
- video_length (int, optional): Number of frames
|
53 |
+
- num_inference_steps (int, optional): Number of inference steps
|
54 |
+
- seed (int, optional): Random seed (-1 for random)
|
55 |
+
- guidance_scale (float, optional): Guidance scale value
|
56 |
+
- flow_shift (float, optional): Flow shift value
|
57 |
+
- embedded_guidance_scale (float, optional): Embedded guidance scale
|
|
|
|
|
58 |
|
59 |
Returns:
|
60 |
+
Dictionary containing the generated video as base64 string
|
61 |
"""
|
62 |
+
# Get inputs from request data
|
63 |
prompt = data.pop("inputs", None)
|
64 |
if prompt is None:
|
65 |
raise ValueError("No prompt provided in the 'inputs' field")
|
66 |
+
|
67 |
+
# Parse resolution
|
68 |
+
resolution = data.pop("resolution", "1280x720")
|
69 |
+
width, height = map(int, resolution.split("x"))
|
70 |
+
|
71 |
+
# Get other parameters with defaults
|
72 |
+
video_length = int(data.pop("video_length", 129))
|
73 |
+
seed = data.pop("seed", -1)
|
74 |
+
seed = None if seed == -1 else int(seed)
|
75 |
+
num_inference_steps = int(data.pop("num_inference_steps", 50))
|
76 |
+
guidance_scale = float(data.pop("guidance_scale", 1.0))
|
77 |
+
flow_shift = float(data.pop("flow_shift", 7.0))
|
78 |
+
embedded_guidance_scale = float(data.pop("embedded_guidance_scale", 6.0))
|
79 |
+
|
80 |
+
# Run inference
|
|
|
|
|
|
|
81 |
outputs = self.model.predict(
|
82 |
prompt=prompt,
|
83 |
height=height,
|
84 |
width=width,
|
85 |
video_length=video_length,
|
86 |
seed=seed,
|
87 |
+
negative_prompt="",
|
88 |
infer_steps=num_inference_steps,
|
89 |
guidance_scale=guidance_scale,
|
90 |
num_videos_per_prompt=1,
|
|
|
92 |
batch_size=1,
|
93 |
embedded_guidance_scale=embedded_guidance_scale
|
94 |
)
|
95 |
+
|
96 |
+
# Get the video tensor
|
97 |
samples = outputs['samples']
|
98 |
sample = samples[0].unsqueeze(0)
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Save to temporary file
|
101 |
+
temp_path = "/tmp/temp_video.mp4"
|
102 |
+
save_videos_grid(sample, temp_path, fps=24)
|
103 |
+
|
104 |
# Read video file and convert to base64
|
105 |
+
with open(temp_path, "rb") as f:
|
106 |
video_bytes = f.read()
|
107 |
+
import base64
|
108 |
video_base64 = base64.b64encode(video_bytes).decode()
|
109 |
+
|
110 |
+
# Cleanup
|
111 |
+
os.remove(temp_path)
|
112 |
+
|
113 |
return {
|
114 |
"video_base64": video_base64,
|
115 |
"seed": outputs['seeds'][0],
|