jbilcke-hf's picture
jbilcke-hf HF staff
Upload 30 files
f08eddf verified
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.attention_processor import SpatialNorm
from .unet_causal_3d_blocks import (
CausalConv3d,
UNetMidBlockCausal3D,
get_down_block3d,
get_up_block3d,
)
@dataclass
class DecoderOutput(BaseOutput):
r"""
Output of decoding method.
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
The decoded output sample from the last layer of the model.
"""
sample: torch.FloatTensor
class EncoderCausal3D(nn.Module):
r"""
The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
mid_block_add_attention=True,
time_compression_ratio: int = 4,
spatial_compression_ratio: int = 8,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
num_time_downsample_layers = int(np.log2(time_compression_ratio))
if time_compression_ratio == 4:
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
add_time_downsample = bool(
i >= (len(block_out_channels) - 1 - num_time_downsample_layers)
and not is_final_block
)
else:
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
downsample_stride_T = (2,) if add_time_downsample else (1,)
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
down_block = get_down_block3d(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=bool(add_spatial_downsample or add_time_downsample),
downsample_stride=downsample_stride,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlockCausal3D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
add_attention=mid_block_add_attention,
)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
r"""The forward method of the `EncoderCausal3D` class."""
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
sample = self.conv_in(sample)
# down
for down_block in self.down_blocks:
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class DecoderCausal3D(nn.Module):
r"""
The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
time_compression_ratio: int = 4,
spatial_compression_ratio: int = 8,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlockCausal3D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
add_attention=mid_block_add_attention,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
num_time_upsample_layers = int(np.log2(time_compression_ratio))
if time_compression_ratio == 4:
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
add_time_upsample = bool(
i >= len(block_out_channels) - 1 - num_time_upsample_layers
and not is_final_block
)
else:
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
up_block = get_up_block3d(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=bool(add_spatial_upsample or add_time_upsample),
upsample_scale_factor=upsample_scale_factor,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
self.gradient_checkpointing = False
def forward(
self,
sample: torch.FloatTensor,
latent_embeds: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
r"""The forward method of the `DecoderCausal3D` class."""
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
latent_embeds,
use_reentrant=False,
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
latent_embeds,
use_reentrant=False,
)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
else:
# middle
sample = self.mid_block(sample, latent_embeds)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = up_block(sample, latent_embeds)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
if parameters.ndim == 3:
dim = 2 # (B, L, C)
elif parameters.ndim == 5 or parameters.ndim == 4:
dim = 1 # (B, C, T, H ,W) / (B, C, H, W)
else:
raise NotImplementedError
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
)
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
sample = randn_tensor(
self.mean.shape,
generator=generator,
device=self.parameters.device,
dtype=self.parameters.dtype,
)
x = self.mean + self.std * sample
return x
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
else:
reduce_dim = list(range(1, self.mean.ndim))
if other is None:
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
dim=reduce_dim,
)
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=reduce_dim,
)
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar +
torch.pow(sample - self.mean, 2) / self.var,
dim=dims,
)
def mode(self) -> torch.Tensor:
return self.mean