jbeno commited on
Commit
bccac83
1 Parent(s): 3908b71

Initial model files and config for custom ELECTRA Large classifier for sentiment

Browse files
README.md CHANGED
@@ -1,3 +1,390 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - sentiment-analysis
5
+ - text-classification
6
+ - electra
7
+ - pytorch
8
+ - transformers
9
  ---
10
+
11
+ # Electra Base Classifier for Sentiment Analysis
12
+
13
+ This is an [ELECTRA large discriminator](https://huggingface.co/google/electra-large-discriminator) fine-tuned for sentiment analysis of reviews. It has a mean pooling layer and a classifier head (2 layers of 1024 dimension) with SwishGLU activation and dropout (0.3). It classifies text into three sentiment categories: 'negative' (0), 'neutral' (1), and 'positive' (2). It was fine-tuned on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a merge of Stanford Sentiment Treebank (SST-3), and DynaSent Rounds 1 and 2.
14
+
15
+
16
+ ## Labels
17
+
18
+ The model predicts the following labels:
19
+
20
+ - `0`: negative
21
+ - `1`: neutral
22
+ - `2`: positive
23
+
24
+ ## How to Use
25
+
26
+ ### Install package
27
+
28
+ This model requires the classes in `electra_classifier.py`. You can download the file, or you can install the package from PyPI.
29
+
30
+ ```bash
31
+ pip install electra-classifier
32
+ ```
33
+
34
+ ### Load classes and model
35
+ ```python
36
+ # Install the package in a notebook
37
+ !pip install electra-classifier
38
+
39
+ # Import libraries
40
+ import torch
41
+ from transformers import AutoTokenizer
42
+ from electra_classifier import ElectraClassifier
43
+
44
+ # Load tokenizer and model
45
+ model_name = "jbeno/electra-large-classifier-sentiment"
46
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
47
+ model = ElectraClassifier.from_pretrained(model_name)
48
+
49
+ # Set model to evaluation mode
50
+ model.eval()
51
+
52
+ # Run inference
53
+ text = "I love this restaurant!"
54
+ inputs = tokenizer(text, return_tensors="pt")
55
+
56
+ with torch.no_grad():
57
+ logits = model(**inputs)
58
+ predicted_class_id = torch.argmax(logits, dim=1).item()
59
+ predicted_label = model.config.id2label[predicted_class_id]
60
+ print(f"Predicted label: {predicted_label}")
61
+ ```
62
+
63
+ ## Requirements
64
+ - Python 3.7+
65
+ - PyTorch
66
+ - Transformers
67
+ - [electra-classifier](https://pypi.org/project/electra-classifier/) - Install with pip, or download electra_classifier.py
68
+
69
+ ## Training Details
70
+
71
+ ### Dataset
72
+
73
+ The model was trained on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a mix of Stanford Sentiment Treebank (SST-3), DynaSent Round 1, and DynaSent Round 2.
74
+
75
+ ### Code
76
+
77
+ The code used to train the model can be found on GitHub:
78
+ - [jbeno/sentiment](https://github.com/jbeno/sentiment)
79
+ - [jbeno/electra-classifier](https://github.com/jbeno/electra-classifier)
80
+
81
+ ### Research Paper
82
+
83
+ The research paper can be found here: [ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis](https://github.com/jbeno/sentiment/research_paper.pdf)
84
+
85
+ ### Performance Summary
86
+
87
+ - **Merged Dataset**
88
+ - Macro Average F1: **82.36**
89
+ - Accuracy: **82.96**
90
+ - **DynaSent R1**
91
+ - Macro Average F1: **85.91**
92
+ - Accuracy: **85.83**
93
+ - **DynaSent R2**
94
+ - Macro Average F1: **76.29**
95
+ - Accuracy: **76.53**
96
+ - **SST-3**
97
+ - Macro Average F1: **70.90**
98
+ - Accuracy: **80.36**
99
+
100
+ ## Model Architecture
101
+
102
+ - **Base Model**: ELECTRA large discriminator (`google/electra-large-discriminator`)
103
+ - **Pooling Layer**: Custom pooling layer supporting 'cls', 'mean', and 'max' pooling types.
104
+ - **Classifier**: Custom classifier with configurable hidden dimensions, number of layers, and dropout rate.
105
+ - **Activation Function**: Custom SwishGLU activation function.
106
+
107
+ ```
108
+ ElectraClassifier(
109
+ (electra): ElectraModel(
110
+ (embeddings): ElectraEmbeddings(
111
+ (word_embeddings): Embedding(30522, 1024, padding_idx=0)
112
+ (position_embeddings): Embedding(512, 1024)
113
+ (token_type_embeddings): Embedding(2, 1024)
114
+ (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
115
+ (dropout): Dropout(p=0.1, inplace=False)
116
+ )
117
+ (encoder): ElectraEncoder(
118
+ (layer): ModuleList(
119
+ (0-23): 24 x ElectraLayer(
120
+ (attention): ElectraAttention(
121
+ (self): ElectraSelfAttention(
122
+ (query): Linear(in_features=1024, out_features=1024, bias=True)
123
+ (key): Linear(in_features=1024, out_features=1024, bias=True)
124
+ (value): Linear(in_features=1024, out_features=1024, bias=True)
125
+ (dropout): Dropout(p=0.1, inplace=False)
126
+ )
127
+ (output): ElectraSelfOutput(
128
+ (dense): Linear(in_features=1024, out_features=1024, bias=True)
129
+ (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
130
+ (dropout): Dropout(p=0.1, inplace=False)
131
+ )
132
+ )
133
+ (intermediate): ElectraIntermediate(
134
+ (dense): Linear(in_features=1024, out_features=4096, bias=True)
135
+ (intermediate_act_fn): GELUActivation()
136
+ )
137
+ (output): ElectraOutput(
138
+ (dense): Linear(in_features=4096, out_features=1024, bias=True)
139
+ (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ )
143
+ )
144
+ )
145
+ )
146
+ (custom_pooling): PoolingLayer()
147
+ (classifier): Classifier(
148
+ (layers): Sequential(
149
+ (0): Linear(in_features=1024, out_features=1024, bias=True)
150
+ (1): SwishGLU(
151
+ (projection): Linear(in_features=1024, out_features=2048, bias=True)
152
+ (activation): SiLU()
153
+ )
154
+ (2): Dropout(p=0.3, inplace=False)
155
+ (3): Linear(in_features=1024, out_features=1024, bias=True)
156
+ (4): SwishGLU(
157
+ (projection): Linear(in_features=1024, out_features=2048, bias=True)
158
+ (activation): SiLU()
159
+ )
160
+ (5): Dropout(p=0.3, inplace=False)
161
+ (6): Linear(in_features=1024, out_features=3, bias=True)
162
+ )
163
+ )
164
+ )
165
+ ```
166
+
167
+ ## Custom Model Components
168
+
169
+ ### SwishGLU Activation Function
170
+
171
+ The SwishGLU activation function combines the Swish activation with a Gated Linear Unit (GLU). It enhances the model's ability to capture complex patterns in the data.
172
+
173
+ ```python
174
+ class SwishGLU(nn.Module):
175
+ def __init__(self, input_dim: int, output_dim: int):
176
+ super(SwishGLU, self).__init__()
177
+ self.projection = nn.Linear(input_dim, 2 * output_dim)
178
+ self.activation = nn.SiLU()
179
+
180
+ def forward(self, x):
181
+ x_proj_gate = self.projection(x)
182
+ projected, gate = x_proj_gate.tensor_split(2, dim=-1)
183
+ return projected * self.activation(gate)
184
+ ```
185
+
186
+ ### PoolingLayer
187
+
188
+ The PoolingLayer class allows you to choose between different pooling strategies:
189
+
190
+ - `cls`: Uses the representation of the \[CLS\] token.
191
+ - `mean`: Calculates the mean of the token embeddings.
192
+ - `max`: Takes the maximum value across token embeddings.
193
+
194
+ **'mean'** pooling was used in the fine-tuned model.
195
+
196
+ ```python
197
+ class PoolingLayer(nn.Module):
198
+ def __init__(self, pooling_type='cls'):
199
+ super().__init__()
200
+ self.pooling_type = pooling_type
201
+
202
+ def forward(self, last_hidden_state, attention_mask):
203
+ if self.pooling_type == 'cls':
204
+ return last_hidden_state[:, 0, :]
205
+ elif self.pooling_type == 'mean':
206
+ return (last_hidden_state * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
207
+ elif self.pooling_type == 'max':
208
+ return torch.max(last_hidden_state * attention_mask.unsqueeze(-1), dim=1)[0]
209
+ else:
210
+ raise ValueError(f"Unknown pooling method: {self.pooling_type}")
211
+ ```
212
+
213
+ ### Classifier
214
+
215
+ The Classifier class is a customizable feed-forward neural network used for the final classification.
216
+
217
+ The fine-tuned model had:
218
+
219
+ - `input_dim`: 1024
220
+ - `num_layers`: 2
221
+ - `hidden_dim`: 1024
222
+ - `hidden_activation`: SwishGLU
223
+ - `dropout_rate`: 0.3
224
+ - `n_classes`: 3
225
+
226
+ ```python
227
+ class Classifier(nn.Module):
228
+ def __init__(self, input_dim, hidden_dim, hidden_activation, num_layers, n_classes, dropout_rate=0.0):
229
+ super().__init__()
230
+ layers = []
231
+ layers.append(nn.Linear(input_dim, hidden_dim))
232
+ layers.append(hidden_activation)
233
+ if dropout_rate > 0:
234
+ layers.append(nn.Dropout(dropout_rate))
235
+
236
+ for _ in range(num_layers - 1):
237
+ layers.append(nn.Linear(hidden_dim, hidden_dim))
238
+ layers.append(hidden_activation)
239
+ if dropout_rate > 0:
240
+ layers.append(nn.Dropout(dropout_rate))
241
+
242
+ layers.append(nn.Linear(hidden_dim, n_classes))
243
+ self.layers = nn.Sequential(*layers)
244
+ ```
245
+
246
+ ## Model Configuration
247
+
248
+ The model's configuration (config.json) includes custom parameters:
249
+
250
+ - `hidden_dim`: Size of the hidden layers in the classifier.
251
+ - `hidden_activation`: Activation function used in the classifier ('SwishGLU').
252
+ - `num_layers`: Number of layers in the classifier.
253
+ - `dropout_rate`: Dropout rate used in the classifier.
254
+ - `pooling`: Pooling strategy used ('mean').
255
+
256
+ ## Performance by Dataset
257
+
258
+ ### Merged Dataset
259
+
260
+ ```
261
+ Merged Dataset Classification Report
262
+
263
+ precision recall f1-score support
264
+
265
+ negative 0.858503 0.843537 0.850954 2352
266
+ neutral 0.747684 0.750137 0.748908 1829
267
+ positive 0.864513 0.877395 0.870906 2349
268
+
269
+ accuracy 0.829556 6530
270
+ macro avg 0.823567 0.823690 0.823590 6530
271
+ weighted avg 0.829626 0.829556 0.829549 6530
272
+
273
+ ROC AUC: 0.947247
274
+
275
+ Predicted negative neutral positive
276
+ Actual
277
+ negative 1984 256 112
278
+ neutral 246 1372 211
279
+ positive 81 207 2061
280
+
281
+ Macro F1 Score: 0.82
282
+ ```
283
+
284
+ ### DynaSent Round 1
285
+
286
+ ```
287
+ DynaSent Round 1 Classification Report
288
+
289
+ precision recall f1-score support
290
+
291
+ negative 0.913204 0.824167 0.866404 1200
292
+ neutral 0.779433 0.915833 0.842146 1200
293
+ positive 0.905149 0.835000 0.868661 1200
294
+
295
+ accuracy 0.858333 3600
296
+ macro avg 0.865929 0.858333 0.859070 3600
297
+ weighted avg 0.865929 0.858333 0.859070 3600
298
+
299
+ ROC AUC: 0.963133
300
+
301
+ Predicted negative neutral positive
302
+ Actual
303
+ negative 989 156 55
304
+ neutral 51 1099 50
305
+ positive 43 155 1002
306
+
307
+ Macro F1 Score: 0.86
308
+ ```
309
+
310
+ ### DynaSent Round 2
311
+
312
+ ```
313
+ DynaSent Round 2 Classification Report
314
+
315
+ precision recall f1-score support
316
+
317
+ negative 0.764706 0.812500 0.787879 240
318
+ neutral 0.814815 0.641667 0.717949 240
319
+ positive 0.731884 0.841667 0.782946 240
320
+
321
+ accuracy 0.765278 720
322
+ macro avg 0.770468 0.765278 0.762924 720
323
+ weighted avg 0.770468 0.765278 0.762924 720
324
+
325
+ ROC AUC: 0.927688
326
+
327
+ Predicted negative neutral positive
328
+ Actual
329
+ negative 195 19 26
330
+ neutral 38 154 48
331
+ positive 22 16 202
332
+
333
+ Macro F1 Score: 0.76
334
+ ```
335
+
336
+ ### Stanford Sentiment Treebank (SST-3)
337
+
338
+ ```
339
+ SST-3 Classification Report
340
+
341
+ precision recall f1-score support
342
+
343
+ negative 0.822199 0.877193 0.848806 912
344
+ neutral 0.504237 0.305913 0.380800 389
345
+ positive 0.856144 0.942794 0.897382 909
346
+
347
+ accuracy 0.803620 2210
348
+ macro avg 0.727527 0.708633 0.708996 2210
349
+ weighted avg 0.780194 0.803620 0.786409 2210
350
+
351
+ ROC AUC: 0.904787
352
+
353
+ Predicted negative neutral positive
354
+ Actual
355
+ negative 800 81 31
356
+ neutral 157 119 113
357
+ positive 16 36 857
358
+
359
+ Macro F1 Score: 0.71
360
+ ```
361
+
362
+ ## License
363
+
364
+ This model is licensed under the MIT License.
365
+
366
+ ## Citation
367
+
368
+ If you use this model in your work, please consider citing it:
369
+
370
+ ```bibtex
371
+ @misc{beno-2024-electra_base_classifier_sentiment,
372
+ title={Electra Large Classifier for Sentiment Analysis},
373
+ author={Jim Beno},
374
+ year={2024},
375
+ publisher={Hugging Face},
376
+ howpublished={\url{https://huggingface.co/jbeno/electra-large-classifier-sentiment}},
377
+ }
378
+ ```
379
+
380
+ ## Contact
381
+
382
+ For questions or comments, please open an issue on the repository or contact [Jim Beno](https://huggingface.co/jbeno).
383
+
384
+ ## Acknowledgments
385
+
386
+ - The [Hugging Face Transformers library](https://github.com/huggingface/transformers) for providing powerful tools for model development.
387
+ - The creators of the [ELECTRA model](https://arxiv.org/abs/2003.10555) for their foundational work.
388
+ - The authors of the datasets used: [Stanford Sentiment Treebank](https://huggingface.co/datasets/stanfordnlp/sst), [DynaSent](https://huggingface.co/datasets/dynabench/dynasent).
389
+ - [Stanford Engineering CGOE](https://cgoe.stanford.edu), [Chris Potts](https://stanford.edu/~cgpotts/), and the Course Facilitators of [XCS224U](https://online.stanford.edu/courses/xcs224u-natural-language-understanding)
390
+
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ElectraClassifier"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dropout_rate": 0.3,
8
+ "embedding_size": 1024,
9
+ "hidden_act": "gelu",
10
+ "hidden_activation": "SwishGLU",
11
+ "hidden_dim": 1024,
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "negative",
16
+ "1": "neutral",
17
+ "2": "positive"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 4096,
21
+ "label2id": {
22
+ "negative": 0,
23
+ "neutral": 1,
24
+ "positive": 2
25
+ },
26
+ "layer_norm_eps": 1e-12,
27
+ "max_position_embeddings": 512,
28
+ "model_type": "electra",
29
+ "num_attention_heads": 16,
30
+ "num_hidden_layers": 24,
31
+ "num_layers": 2,
32
+ "pad_token_id": 0,
33
+ "pooling": "mean",
34
+ "position_embedding_type": "absolute",
35
+ "summary_activation": "gelu",
36
+ "summary_last_dropout": 0.1,
37
+ "summary_type": "first",
38
+ "summary_use_proj": true,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.37.1",
41
+ "type_vocab_size": 2,
42
+ "use_cache": true,
43
+ "vocab_size": 30522
44
+ }
electra_classifier.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from transformers import ElectraPreTrainedModel, ElectraModel
4
+
5
+ # Custom activation function
6
+ class SwishGLU(nn.Module):
7
+ def __init__(self, input_dim: int, output_dim: int):
8
+ super(SwishGLU, self).__init__()
9
+ self.projection = nn.Linear(input_dim, 2 * output_dim)
10
+ self.activation = nn.SiLU()
11
+
12
+ def forward(self, x):
13
+ x_proj_gate = self.projection(x)
14
+ projected, gate = x_proj_gate.tensor_split(2, dim=-1)
15
+ return projected * self.activation(gate)
16
+
17
+
18
+ # Custom pooling layer
19
+ class PoolingLayer(nn.Module):
20
+ def __init__(self, pooling_type='cls'):
21
+ super().__init__()
22
+ self.pooling_type = pooling_type
23
+
24
+ def forward(self, last_hidden_state, attention_mask):
25
+ if self.pooling_type == 'cls':
26
+ return last_hidden_state[:, 0, :]
27
+ elif self.pooling_type == 'mean':
28
+ # Mean pooling over the token embeddings
29
+ return (last_hidden_state * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
30
+ elif self.pooling_type == 'max':
31
+ # Max pooling over the token embeddings
32
+ return torch.max(last_hidden_state * attention_mask.unsqueeze(-1), dim=1)[0]
33
+ else:
34
+ raise ValueError(f"Unknown pooling method: {self.pooling_type}")
35
+
36
+
37
+ # Custom classifier
38
+ class Classifier(nn.Module):
39
+ def __init__(self, input_dim, hidden_dim, hidden_activation, num_layers, n_classes, dropout_rate=0.0):
40
+ super().__init__()
41
+ layers = []
42
+ layers.append(nn.Linear(input_dim, hidden_dim))
43
+ layers.append(hidden_activation)
44
+ if dropout_rate > 0:
45
+ layers.append(nn.Dropout(dropout_rate))
46
+
47
+ for _ in range(num_layers - 1):
48
+ layers.append(nn.Linear(hidden_dim, hidden_dim))
49
+ layers.append(hidden_activation)
50
+ if dropout_rate > 0:
51
+ layers.append(nn.Dropout(dropout_rate))
52
+
53
+ layers.append(nn.Linear(hidden_dim, n_classes))
54
+ self.layers = nn.Sequential(*layers)
55
+
56
+ def forward(self, x):
57
+ return self.layers(x)
58
+
59
+
60
+ # Custom Electra classifier model
61
+ class ElectraClassifier(ElectraPreTrainedModel):
62
+ def __init__(self, config):
63
+ super().__init__(config)
64
+ self.electra = ElectraModel(config)
65
+
66
+ if hasattr(self.electra, 'pooler'):
67
+ self.electra.pooler = None
68
+
69
+ self.pooling = PoolingLayer(pooling_type=config.pooling)
70
+
71
+ # Handle custom activation functions
72
+ activation_name = config.hidden_activation
73
+ if activation_name == 'SwishGLU':
74
+ hidden_activation = SwishGLU(
75
+ input_dim=config.hidden_dim,
76
+ output_dim=config.hidden_dim
77
+ )
78
+ else:
79
+ activation_class = getattr(nn, activation_name)
80
+ hidden_activation = activation_class()
81
+
82
+ self.classifier = Classifier(
83
+ input_dim=config.hidden_size,
84
+ hidden_dim=config.hidden_dim,
85
+ hidden_activation=hidden_activation,
86
+ num_layers=config.num_layers,
87
+ n_classes=config.num_labels,
88
+ dropout_rate=config.dropout_rate
89
+ )
90
+ self.init_weights()
91
+
92
+ def forward(self, input_ids=None, attention_mask=None, **kwargs):
93
+ outputs = self.electra(input_ids, attention_mask=attention_mask, **kwargs)
94
+ pooled_output = self.pooling(outputs.last_hidden_state, attention_mask)
95
+ logits = self.classifier(pooled_output)
96
+ return logits
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:becf9a8ff41dc560d132c6430079e745cffd96e9cfe23c6100022c1bf68ba0b0
3
+ size 1353223676
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f138e3d706d1972f0859d0f0385a19c98ac2713c9a9ff8f13f28494986d402c
3
+ size 1353307070
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "ElectraTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff