|
import cv2 |
|
import einops |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
|
|
from cldm.hack import disable_verbosity |
|
disable_verbosity() |
|
|
|
from pytorch_lightning import seed_everything |
|
from annotator.util import resize_image, HWC3 |
|
from annotator.uniformer import apply_uniformer |
|
from cldm.model import create_model, load_state_dict |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
|
|
def process_seg(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta, model, ddim_sampler): |
|
with torch.no_grad(): |
|
input_image = HWC3(input_image) |
|
detected_map = apply_uniformer(resize_image(input_image, detect_resolution)) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
seed_everything(seed) |
|
|
|
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} |
|
un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} |
|
shape = (4, H // 8, W // 8) |
|
|
|
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, |
|
shape, cond, verbose=False, eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
x_samples = model.decode_first_stage(samples) |
|
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [detected_map] + results |
|
|