jaybeeja commited on
Commit
f314671
·
1 Parent(s): fbb2c30

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 257.81 +/- 64.33
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 269.12 +/- 21.26
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15020a3cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15020a3d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15020a3dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15020a3e60>", "_build": "<function ActorCriticPolicy._build at 0x7f15020a3ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f15020a3f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15020a9050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f15020a90e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15020a9170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15020a9200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15020a9290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f15020e4e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670648843720080471, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9qb2huZWJsYWtlL21hbWJhZm9yZ2UvZW52cy9zYjMvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3NiMy9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABAAAjZuXvV4z3T1DTDU+/E3cvv2apD0QnNY9AAAAAAAAAAAAKaU89s1KvACRsLzXZri70yaavbKhqLwAAIA/AACAP4BPPb19rLA/AWGjvg4nh77/+ri9LvSCvgAAAAAAAAAA5u9IvQ8Fdry+zG89nUpUPQZChr1daDo9AACAPwAAgD8zZ6A9RNUlPhLAHr4aarO+aYncvEPf8zsAAAAAAAAAAO1ZEz6jozs/W9kEPhpiC78NpF4+nTy9PAAAAAAAAAAAmiGuvF78gz2wvgE+viSyvlgH6z1mlmm8AAAAAAAAAADa2nA+QuthP01i0j7Uow+/agPgPkYIXz4AAAAAAAAAAPMcGj5ctrw+BpPKvVROy74dkRU+JNGSvQAAAAAAAAAAM4OTuko7kj+9Yes8hGEnv5a2gL1ipto7AAAAAAAAAAAA+cA8SC+UuvIGdLQ63fyva4/AuorWpDMAAIA/AACAP43HRT6kTXs/yXklPl/1F7/RnYY+sn6PPAAAAAAAAAAAzZGOPBa7YD3y8ZK+1miavr10M76T0e07AAAAAAAAAAAAHG08XNtvuutIKbMQy6qvH2bgOkCMyzMAAIA/AACAP2bRNr0Py3a8Os8MPkt5rruvn328o7XWPQAAgD8AAIA/M80DPaQL7j66/ww9+vbwvoaLmz3VhR+9AAAAAAAAAACDwoE+e2FqP7bfqz4H+yO/W83dPubqnj0AAAAAAAAAAE5bj74LNmI/zjfnvf+pCb/XIvO+9rA/PQAAAAAAAAAAmmGvu4EytD83ygq/imkOvhNzyzv9gPs9AAAAAAAAAAAABp08A4MwvHtFbL3unKY8u8mNPT6z0bsAAIA/AACAP5Z5Zr77Xy0/vsYOvuDQEr/f662+Ec6kPQAAAAAAAAAAJhCxvXENY7k67Co66yWdMxM4+7lW4UizAACAPwAAAABztoo9SLOmuoOFCjO09gCxInruuUdiv7MAAIA/AACAP4B3Pj3wopg/QwVzPoDwJb9G9Iw9ZOoIPgAAAAAAAAAA4I8MPqAokD6H15i+3pa6vuIzU7vmRri9AAAAAAAAAAAzMW48MY5LPhanID4Mf8q+5uQPPvp7hD0AAAAAAAAAALMZxz2f2Z8/xZ7sPkqZHr+FD+Q9vhWVPgAAAAAAAAAAgLXKvY/WyT6FOLo95PvzvgPeWb22t6c9AAAAAAAAAACNo3Y+j7M1vF3Lb7pT9jM4TQqbvZm3jTkAAAAAAAAAABpzYb3hXpK652FEO3OHuzcqrTQ7JtEZugAAAAAAAAAAgGNSvY80Qrz0gpU5b4Z5PGS7u71ty009AACAPwAAgD/NQUY+2lKnP8Ju/D7HAyC/BTubPl3kCz4AAAAAAAAAAJR0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDIAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsg3cgbpacECUhpRSlIwBbJRLwowBdJRHQKItDVjqfOF1fZQoaAZoCWgPQwg1zxH5rqRxQJSGlFKUaBVLvGgWR0CiLSoXKr7wdX2UKGgGaAloD0MIjdKlfwk3c0CUhpRSlGgVS9hoFkdAoi1QNI9TxXV9lChoBmgJaA9DCA5mE2DYrG9AlIaUUpRoFUu9aBZHQKItVGEwnIB1fZQoaAZoCWgPQwhR9SudD9pwQJSGlFKUaBVL3GgWR0CiLbju0CzUdX2UKGgGaAloD0MIAma+g99hcUCUhpRSlGgVS9ZoFkdAoi3/CwbEP3V9lChoBmgJaA9DCG3IPzMI83FAlIaUUpRoFUvCaBZHQKIt/4D9wWF1fZQoaAZoCWgPQwhYx/FD5d5xQJSGlFKUaBVL72gWR0CiLjKkl/pddX2UKGgGaAloD0MIF/TeGMIOdECUhpRSlGgVS9JoFkdAoi44Krq+rXV9lChoBmgJaA9DCBlybD3DPXFAlIaUUpRoFUvWaBZHQKIuODK5kLB1fZQoaAZoCWgPQwjF5uPaEEpzQJSGlFKUaBVL52gWR0CiLjv1lGwzdX2UKGgGaAloD0MIvtnmxvT9cECUhpRSlGgVS89oFkdAoi6bXe3x4XV9lChoBmgJaA9DCKQYINHE9nFAlIaUUpRoFUvkaBZHQKIuqN2ki2V1fZQoaAZoCWgPQwi/1xAcl8dxQJSGlFKUaBVLuWgWR0CiLq4axX4kdX2UKGgGaAloD0MIZeJWQcyYcECUhpRSlGgVS8JoFkdAoi68Mw1zhnV9lChoBmgJaA9DCP8iaMzkt3JAlIaUUpRoFUvlaBZHQKIu2QwsXi11fZQoaAZoCWgPQwietdsutJZzQJSGlFKUaBVLzWgWR0CiLwCEpRXPdX2UKGgGaAloD0MI7PfEOtVjckCUhpRSlGgVS7loFkdAoi9TZDiOvXV9lChoBmgJaA9DCKoQj8QLPXBAlIaUUpRoFUvNaBZHQKIvjQgs9Sx1fZQoaAZoCWgPQwh6jV2i+tFxQJSGlFKUaBVLyWgWR0CiL5JT2nKodX2UKGgGaAloD0MIIorJG2DqcECUhpRSlGgVS7RoFkdAoi+dUIcBEXV9lChoBmgJaA9DCBpqFJKMrHFAlIaUUpRoFUvQaBZHQKIvnTdcjaB1fZQoaAZoCWgPQwgmcVZETdlzQJSGlFKUaBVL02gWR0CiL7AIIF/ydX2UKGgGaAloD0MI5+RFJmCocECUhpRSlGgVS8VoFkdAoi+/JRwZO3V9lChoBmgJaA9DCNKqlnQU8nFAlIaUUpRoFUvmaBZHQKIvv003wTd1fZQoaAZoCWgPQwjLFHMQ9OtuQJSGlFKUaBVL2GgWR0CiL95eqrBCdX2UKGgGaAloD0MI7iJMUS5BcECUhpRSlGgVS85oFkdAojANyimEXnV9lChoBmgJaA9DCGnhsgqbmnNAlIaUUpRoFUuzaBZHQKIwNBrN4aB1fZQoaAZoCWgPQwh1zHnGvhlTQJSGlFKUaBVLgWgWR0CiMIyOq//OdX2UKGgGaAloD0MIvqHw2XqbcUCUhpRSlGgVS75oFkdAojCR0r9VFXV9lChoBmgJaA9DCJp7SPieJ3JAlIaUUpRoFUvHaBZHQKIwmqUeMhp1fZQoaAZoCWgPQwju7gG6L0RzQJSGlFKUaBVL4mgWR0CiMJrIgeRxdX2UKGgGaAloD0MIfqg0YmYQckCUhpRSlGgVS91oFkdAojDFwWFewHV9lChoBmgJaA9DCNvC81IxnW9AlIaUUpRoFUvJaBZHQKIw71DjR2N1fZQoaAZoCWgPQwj4GKw4Fb9zQJSGlFKUaBVL0WgWR0CiMQ7FS88LdX2UKGgGaAloD0MIpOTVOYbQbkCUhpRSlGgVS7loFkdAojFKJyhi9nV9lChoBmgJaA9DCHTudr00LHJAlIaUUpRoFUu+aBZHQKIxY7FKkEd1fZQoaAZoCWgPQwilETP7PL9xQJSGlFKUaBVLsmgWR0CiMWrYoRZmdX2UKGgGaAloD0MI3KD2W/sKcECUhpRSlGgVS9BoFkdAojF4Ly+YdHV9lChoBmgJaA9DCN3PKchPI3BAlIaUUpRoFUvCaBZHQKIxrWoWHk91fZQoaAZoCWgPQwgniSXlbv5uQJSGlFKUaBVL0mgWR0CiMgUJOWSmdX2UKGgGaAloD0MI66nVV5ffcECUhpRSlGgVS75oFkdAojITELpiZ3V9lChoBmgJaA9DCHfYRGbuF3FAlIaUUpRoFUu/aBZHQKIyPGpda+x1fZQoaAZoCWgPQwhssHCSJsVyQJSGlFKUaBVLwWgWR0CiMmM2eg+RdX2UKGgGaAloD0MIlfCEXv+VckCUhpRSlGgVS71oFkdAojJ9k8Rtg3V9lChoBmgJaA9DCD4l58SeM3NAlIaUUpRoFUvTaBZHQKIyjuvUz9F1fZQoaAZoCWgPQwihhm9hHe9xQJSGlFKUaBVL22gWR0CiMsEhib2EdX2UKGgGaAloD0MI7QvohbuicUCUhpRSlGgVS7NoFkdAojL9+1Bt13V9lChoBmgJaA9DCEFF1a+0GnBAlIaUUpRoFUu4aBZHQKIzD4B3iaR1fZQoaAZoCWgPQwjMtz6s9+lxQJSGlFKUaBVLv2gWR0CiMz1xS5y3dX2UKGgGaAloD0MIFY4glWJ8cECUhpRSlGgVS79oFkdAojNRouf29XV9lChoBmgJaA9DCEGDTZ0HcXFAlIaUUpRoFUvIaBZHQKIzW690zTF1fZQoaAZoCWgPQwjtKqT8ZJBxQJSGlFKUaBVL12gWR0CiM3BlDneSdX2UKGgGaAloD0MIMNY3MHkbdECUhpRSlGgVS8loFkdAojOScf/3nXV9lChoBmgJaA9DCC3uPzKdx3FAlIaUUpRoFUvJaBZHQKIzkmgrYoR1fZQoaAZoCWgPQwh2492RcXtxQJSGlFKUaBVL32gWR0CiNC8ZtNzsdX2UKGgGaAloD0MIbhRZa+hcckCUhpRSlGgVS7toFkdAojRBp5/smnV9lChoBmgJaA9DCAA5YcKo3XFAlIaUUpRoFUu+aBZHQKI0W+t8uz11fZQoaAZoCWgPQwgSo+cWet1xQJSGlFKUaBVLuGgWR0CiNHUfYBeYdX2UKGgGaAloD0MIv7hUpS0NcECUhpRSlGgVS+ZoFkdAojTLLQokRnV9lChoBmgJaA9DCNsxdVf2ZW9AlIaUUpRoFUvgaBZHQKI1Gdfb9Ih1fZQoaAZoCWgPQwjgumJGeIpxQJSGlFKUaBVL/mgWR0CiNSzSkTHsdX2UKGgGaAloD0MIHo1D/S4fckCUhpRSlGgVS+JoFkdAojU5OnEVFnV9lChoBmgJaA9DCPhu88YJpXFAlIaUUpRoFUu9aBZHQKI1RYISlFd1fZQoaAZoCWgPQwilg/V/jlVxQJSGlFKUaBVLvWgWR0CiNWTjWCmNdX2UKGgGaAloD0MIgVt381S2VECUhpRSlGgVS5xoFkdAojVyO7xusXV9lChoBmgJaA9DCGh6ibHMcW9AlIaUUpRoFUviaBZHQKI1oVSGahJ1fZQoaAZoCWgPQwhPIOwUKwhxQJSGlFKUaBVL4WgWR0CiNcBFVktmdX2UKGgGaAloD0MIg94bQ4B6cUCUhpRSlGgVS91oFkdAojYfmNipenV9lChoBmgJaA9DCN6Th4Ua9HJAlIaUUpRoFUuyaBZHQKI2O4SYgJV1fZQoaAZoCWgPQwgG1nH8kPtxQJSGlFKUaBVL6GgWR0CiNkdFfAsTdX2UKGgGaAloD0MI2QbuQF2fckCUhpRSlGgVS8loFkdAojZRprULD3V9lChoBmgJaA9DCOKQDaQLeHJAlIaUUpRoFUvbaBZHQKI2VgR9PUN1fZQoaAZoCWgPQwjnw7MEGftxQJSGlFKUaBVLuGgWR0CiNoUhNdqtdX2UKGgGaAloD0MI91j60EUOcECUhpRSlGgVS81oFkdAojafDFZPmHV9lChoBmgJaA9DCAd+VMP+W3BAlIaUUpRoFUvUaBZHQKI3ToIv8Il1fZQoaAZoCWgPQwiughjoGtByQJSGlFKUaBVL4mgWR0CiN1uQp4KQdX2UKGgGaAloD0MIk1M7wxRRc0CUhpRSlGgVS8xoFkdAojdkKCxu9HV9lChoBmgJaA9DCFN7EW1HVXFAlIaUUpRoFUvIaBZHQKI3j0uDjBF1fZQoaAZoCWgPQwi0ccRa/KhuQJSGlFKUaBVLwmgWR0CiN6e/Yao/dX2UKGgGaAloD0MIJEOOrecSc0CUhpRSlGgVS85oFkdAojgO/pMYdnV9lChoBmgJaA9DCHjxfty+MHFAlIaUUpRoFUvoaBZHQKI4D1B+nZV1fZQoaAZoCWgPQwjOUNzxplRwQJSGlFKUaBVL22gWR0CiOBsM7U5NdX2UKGgGaAloD0MI0c5pFqjTc0CUhpRSlGgVS+BoFkdAojgqFwkxAXV9lChoBmgJaA9DCMkDkUXafnJAlIaUUpRoFUvBaBZHQKI4a3x4IKN1fZQoaAZoCWgPQwhJEoQrIJNxQJSGlFKUaBVL4WgWR0CiOH+evpyIdX2UKGgGaAloD0MIlstG53ybcECUhpRSlGgVS8ZoFkdAojjKt/4Ir3V9lChoBmgJaA9DCA9kPbX6pGlAlIaUUpRoFU3oA2gWR0CiONcEFGG3dX2UKGgGaAloD0MIQ3HHm3wAcECUhpRSlGgVS9NoFkdAojlmPq9oOHV9lChoBmgJaA9DCC7m54amqXNAlIaUUpRoFUvpaBZHQKI5dh7Vrh11fZQoaAZoCWgPQwhKea2ErrxxQJSGlFKUaBVL8GgWR0CiOYFtCRfXdX2UKGgGaAloD0MIodtLGqNWcUCUhpRSlGgVS8VoFkdAojmBZU1hs3V9lChoBmgJaA9DCHef46NFP29AlIaUUpRoFUvSaBZHQKI5uNp/PPd1fZQoaAZoCWgPQwjMDBtl/bdyQJSGlFKUaBVLymgWR0CiOcTCLuQZdX2UKGgGaAloD0MIVp+rrVidcECUhpRSlGgVS9ZoFkdAojnE6xPfsXV9lChoBmgJaA9DCILF4cxvQXFAlIaUUpRoFUvbaBZHQKI5zYywfQt1fZQoaAZoCWgPQwiUvaWcr/twQJSGlFKUaBVLvmgWR0CiOi5HNHH4dX2UKGgGaAloD0MIlDMUd7z6ckCUhpRSlGgVS9doFkdAojozLpzLfXV9lChoBmgJaA9DCIp0P6dg/nJAlIaUUpRoFUvoaBZHQKI6Tqu8sc11fZQoaAZoCWgPQwgTQ3IyMbxyQJSGlFKUaBVLyGgWR0CiOpJr1uiwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9qb2huZWJsYWtlL21hbWJhZm9yZ2UvZW52cy9zYjMvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3NiMy9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-debian-bullseye-sid #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b44d28560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b44d285f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b44d28680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b44d28710>", "_build": "<function ActorCriticPolicy._build at 0x7f1b44d287a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1b44d28830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b44d288c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1b44d28950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b44d289e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b44d28a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b44d28b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1b44d7c4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671304055932690326, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9qb2huZWJsYWtlL21hbWJhZm9yZ2UvZW52cy9zYjMvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3NiMy9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAPqhvR5Ewj5yrBy8KqZBvngcmLw70lA9AAAAAAAAAADaANE98acjPI0Ndb6qUFS+HlKhveiU/zwAAAAAAAAAAO3thz4UXkY/7n4ZPis+rr5GqzE+JYYJvgAAAAAAAAAAjUCsvVrzoD9ow9K+Fwuzvkq/8r02MXu+AAAAAAAAAABA28E+gbkBPwIs1b1KKKm+OpkUPp5TWb0AAAAAAAAAACY2ej5Opos/qDOxPoYO7L47roc+E6UXvQAAAAAAAAAA89WEvaf3Fj52fYQ+H/BTvs+UiT3JGrE8AAAAAAAAAACOOYG+Tt47P3PILD7Am5q+SQ/rvdOBDj4AAAAAAAAAAG3oDD6l9hI+Laa1vZ+niL72TZO8SFSvPQAAAAAAAAAAGht4vRu0ZD8dMhM9cQG8vhaAZL0ag/a7AAAAAAAAAABadvw9ZG2+Ph3F272eO5W+SEimO1NATbwAAAAAAAAAACbMKT7Uesg+4V8svp0Vkb7ECe68inGgOAAAAAAAAAAAGh7AvdVzxD6pEwM8XRlSvtsMib0xciO9AAAAAAAAAAD44q6+INpvP16+x71L3ai+PnGrvoIfNT0AAAAAAAAAAGZqyj4J81E/pNAXPa2inr5re6g+FU9KvgAAAAAAAAAAGhzGvaa9mz8KIoW+G/a6vnWnEr61eMC9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm1lLAWkjbUCUhpRSlIwBbJRNDAGMAXSUR0CRy4Hj6vaDdX2UKGgGaAloD0MIYVW9/I52cECUhpRSlGgVTXoBaBZHQJHLvuSfUWl1fZQoaAZoCWgPQwg7/gsEAWZvQJSGlFKUaBVNPgFoFkdAkcwmLpA2RHV9lChoBmgJaA9DCAPN59zt/nBAlIaUUpRoFU05AWgWR0CRzFRGtp22dX2UKGgGaAloD0MIg/bq46GKcUCUhpRSlGgVTXcBaBZHQJHMXLZBcA11fZQoaAZoCWgPQwjri4S23B1yQJSGlFKUaBVNUAFoFkdAkc1OIEbHZXV9lChoBmgJaA9DCN2x2CaV4nFAlIaUUpRoFU0wAWgWR0CRzW4oJAt4dX2UKGgGaAloD0MIWwacpeQKb0CUhpRSlGgVTYUBaBZHQJHOBJsfq5d1fZQoaAZoCWgPQwhvL2mM1g5vQJSGlFKUaBVNEwNoFkdAkc6ur6tT1nV9lChoBmgJaA9DCCCXOPKACHFAlIaUUpRoFU0gAWgWR0CRztstkFwDdX2UKGgGaAloD0MITRWMSmr+bUCUhpRSlGgVTQ4BaBZHQJHQscDKYAt1fZQoaAZoCWgPQwhLd9fZkCs5QJSGlFKUaBVL42gWR0CR0hscQyyldX2UKGgGaAloD0MIw9fXutRkbECUhpRSlGgVTTQBaBZHQJHSoiosI3R1fZQoaAZoCWgPQwh39L9cy2NyQJSGlFKUaBVNUQFoFkdAkdMe67NB4XV9lChoBmgJaA9DCPMAFvl1W3BAlIaUUpRoFU0oAWgWR0CR08CDEm6YdX2UKGgGaAloD0MIXvI/+TtKcUCUhpRSlGgVTR4BaBZHQJHT/keZG8V1fZQoaAZoCWgPQwgHlbiOsZtwQJSGlFKUaBVNAwFoFkdAkdQ8lkYoAnV9lChoBmgJaA9DCC2Xjc659XBAlIaUUpRoFU1DAWgWR0CR1EtjCpFTdX2UKGgGaAloD0MIMUW5NP72cUCUhpRSlGgVTWoBaBZHQJHUdCojv/l1fZQoaAZoCWgPQwgujzUjA+txQJSGlFKUaBVNQQFoFkdAkdTg44p+dHV9lChoBmgJaA9DCJOQSNv4rHBAlIaUUpRoFU0mAWgWR0CR1Txeb/fgdX2UKGgGaAloD0MI4V0u4rtAcUCUhpRSlGgVTS4BaBZHQJHWHRrrPdF1fZQoaAZoCWgPQwhWR450RitwQJSGlFKUaBVNHgFoFkdAkdaFDjR2KXV9lChoBmgJaA9DCM5uLZOhYnFAlIaUUpRoFU1JAWgWR0CR13qQzUI+dX2UKGgGaAloD0MIgV64c2Emb0CUhpRSlGgVTTgBaBZHQJHZMjKPn0V1fZQoaAZoCWgPQwhRacTMPsFxQJSGlFKUaBVNcgJoFkdAkdnl5v99+nV9lChoBmgJaA9DCMegE0IHWUNAlIaUUpRoFUvvaBZHQJHamQkona51fZQoaAZoCWgPQwiBW3fzVLdwQJSGlFKUaBVNTQFoFkdAkdszviLl3nV9lChoBmgJaA9DCITzqWNVeXJAlIaUUpRoFU0tAWgWR0CR3AUDdP+GdX2UKGgGaAloD0MI1xUzwhtZcECUhpRSlGgVTVoBaBZHQJHcN0p3HJd1fZQoaAZoCWgPQwh8urpj8e1xQJSGlFKUaBVNNQFoFkdAkdyfL9uP3nV9lChoBmgJaA9DCITTghe9Y3FAlIaUUpRoFU2NAmgWR0CR3MlAu7HydX2UKGgGaAloD0MIaK7TSEsRckCUhpRSlGgVTVsBaBZHQJHc0YXO4Xp1fZQoaAZoCWgPQwhUUiegyWRwQJSGlFKUaBVNOgFoFkdAkd3JUYKpk3V9lChoBmgJaA9DCEOSWb2DkHJAlIaUUpRoFU08AWgWR0CR3i+b3Gn5dX2UKGgGaAloD0MIchb2tMO4bkCUhpRSlGgVTWEBaBZHQJHeT8zhxYJ1fZQoaAZoCWgPQwjL94xEqH1xQJSGlFKUaBVNawFoFkdAkd5mS2Yv4HV9lChoBmgJaA9DCKyOHOlMBXFAlIaUUpRoFU0yAWgWR0CR3sSVnmJWdX2UKGgGaAloD0MIYr8n1ql/bECUhpRSlGgVTRABaBZHQJHg/zTWoWJ1fZQoaAZoCWgPQwihFK3ci1lwQJSGlFKUaBVNgQFoFkdAkeF4ZIg/1XV9lChoBmgJaA9DCIlhhzHpCnBAlIaUUpRoFU0ZAWgWR0CR4wbM5fdAdX2UKGgGaAloD0MIfjhIiHJUa0CUhpRSlGgVTbMBaBZHQJHkjLvCuU51fZQoaAZoCWgPQwgc7iO3JnZsQJSGlFKUaBVNZAFoFkdAkeTZDE3sHHV9lChoBmgJaA9DCMXkDTDzWFFAlIaUUpRoFUviaBZHQJHlizVtoBd1fZQoaAZoCWgPQwikiAyrOKVwQJSGlFKUaBVNOwFoFkdAkeXEs8PnS3V9lChoBmgJaA9DCFacai0MvHFAlIaUUpRoFU03AWgWR0CR5jSLqD9PdX2UKGgGaAloD0MIWoKMgEoNcECUhpRSlGgVTUEBaBZHQJHmtRR/EwZ1fZQoaAZoCWgPQwhkzcggNxBwQJSGlFKUaBVNVAFoFkdAkebEkKNQ03V9lChoBmgJaA9DCF4wuOaO5nFAlIaUUpRoFU0SAWgWR0CR5trksBhhdX2UKGgGaAloD0MIVOQQcfMmcUCUhpRSlGgVTXYBaBZHQJHm533YcvN1fZQoaAZoCWgPQwgUrkfhuuJwQJSGlFKUaBVNJgFoFkdAkgjHZsbednV9lChoBmgJaA9DCLX66qoAAXJAlIaUUpRoFU1OAWgWR0CSCVVrAP/adX2UKGgGaAloD0MINX9Ma9Ozb0CUhpRSlGgVTRMBaBZHQJIMZrKvFFV1fZQoaAZoCWgPQwiBCkeQShtvQJSGlFKUaBVNRwFoFkdAkgynuAqd6XV9lChoBmgJaA9DCGO1+X/VAXFAlIaUUpRoFU1cAWgWR0CSDN7b+Lm7dX2UKGgGaAloD0MI/DbEeI0Hc0CUhpRSlGgVTToBaBZHQJIPIAJb+tN1fZQoaAZoCWgPQwhCeR9Hc+NxQJSGlFKUaBVNPAFoFkdAkg+MwQDmsHV9lChoBmgJaA9DCDv7yoN0zXJAlIaUUpRoFU0EAWgWR0CSD9R3/xUedX2UKGgGaAloD0MI/l915Ej+b0CUhpRSlGgVTRMBaBZHQJIQJM23rlh1fZQoaAZoCWgPQwgf2scKfpBuQJSGlFKUaBVNKwFoFkdAkhEWW2PT5XV9lChoBmgJaA9DCEZfQZoxl3BAlIaUUpRoFU1GAWgWR0CSEWVDKHO9dX2UKGgGaAloD0MIIlUUr3IacECUhpRSlGgVTQ4BaBZHQJIRq/CZWq91fZQoaAZoCWgPQwimKm1xTQtxQJSGlFKUaBVNPQFoFkdAkhHHww0wanV9lChoBmgJaA9DCBgIAmSo7XFAlIaUUpRoFU1lAmgWR0CSEfhaC+URdX2UKGgGaAloD0MIS5ARUKGBckCUhpRSlGgVTRgBaBZHQJISklMRHwx1fZQoaAZoCWgPQwgQ5+EEpgNwQJSGlFKUaBVNCgFoFkdAkhVI42jwhHV9lChoBmgJaA9DCGNBYVCmv29AlIaUUpRoFU3hAWgWR0CSFV4GD+R6dX2UKGgGaAloD0MImyDqPoCbbUCUhpRSlGgVTSMBaBZHQJIVxY4hllN1fZQoaAZoCWgPQwg83Xni+WJyQJSGlFKUaBVNNwFoFkdAkhbO9rXUY3V9lChoBmgJaA9DCGTmApeHWXBAlIaUUpRoFU0yAmgWR0CSGB619fCzdX2UKGgGaAloD0MIgxQ8hRxIc0CUhpRSlGgVTRMBaBZHQJIZqEVWS2Z1fZQoaAZoCWgPQwi2ZFWE2+hwQJSGlFKUaBVNTQFoFkdAkhnZ0Syt3nV9lChoBmgJaA9DCEIlrmPc/21AlIaUUpRoFU0PAWgWR0CSGhtoi9qUdX2UKGgGaAloD0MISnmthC5MckCUhpRSlGgVTR8BaBZHQJIaZnctXgd1fZQoaAZoCWgPQwiel4qNeeVvQJSGlFKUaBVNUgFoFkdAkhpnNxEORXV9lChoBmgJaA9DCHeBkgILgHBAlIaUUpRoFU0UAWgWR0CSGp2sq8UVdX2UKGgGaAloD0MIRkJbzqWicECUhpRSlGgVTUoBaBZHQJIapnrY5DJ1fZQoaAZoCWgPQwg+IqZE0khxQJSGlFKUaBVNWwFoFkdAkhrp22XsxHV9lChoBmgJaA9DCOl8eJYgiU9AlIaUUpRoFUvZaBZHQJIcPZuhsZZ1fZQoaAZoCWgPQwgyryMOWRdyQJSGlFKUaBVNUwFoFkdAkhxFmapgkXV9lChoBmgJaA9DCLOaric6ZWxAlIaUUpRoFU1JAWgWR0CSHMm2b5M2dX2UKGgGaAloD0MIBD3UtuGPYUCUhpRSlGgVTegDaBZHQJIc0LG7z091fZQoaAZoCWgPQwg33bJD/NlxQJSGlFKUaBVL/GgWR0CSHTyP+4smdX2UKGgGaAloD0MIbF9AL9yGcECUhpRSlGgVTSoBaBZHQJIe2J+DvmZ1fZQoaAZoCWgPQwhsCI7LeIdxQJSGlFKUaBVNOAFoFkdAkiFvXTVlPXV9lChoBmgJaA9DCK6AQj29QnJAlIaUUpRoFU0XAWgWR0CSIkT6i0v5dX2UKGgGaAloD0MI5kAPte2AcUCUhpRSlGgVTScBaBZHQJIiWCYkVvd1fZQoaAZoCWgPQwgpBkg0AXtuQJSGlFKUaBVNJgFoFkdAkiKGYfGMoHV9lChoBmgJaA9DCDhm2ZPAImxAlIaUUpRoFU0vAWgWR0CSI3gV45cUdX2UKGgGaAloD0MIg6W6gBdWb0CUhpRSlGgVTTABaBZHQJIjtAfMfRx1fZQoaAZoCWgPQwiPqbuyC7xyQJSGlFKUaBVNngFoFkdAkiO+JLuhK3V9lChoBmgJaA9DCK7X9KAgCXJAlIaUUpRoFU1LAWgWR0CSJNaLGaQWdX2UKGgGaAloD0MIU13Ay4zPb0CUhpRSlGgVTVwBaBZHQJIlFme18b91fZQoaAZoCWgPQwjLZ3keXG1xQJSGlFKUaBVNEAFoFkdAkiWWQKa5PXV9lChoBmgJaA9DCK/NxkrM0HBAlIaUUpRoFU09AWgWR0CSJdQ40dildX2UKGgGaAloD0MI58b0hKXbcUCUhpRSlGgVTX0BaBZHQJIl5hkRSP51fZQoaAZoCWgPQwigUiXK3uxvQJSGlFKUaBVNPgFoFkdAkiXnUYsND3V9lChoBmgJaA9DCBTLLa0GuG9AlIaUUpRoFU0+AWgWR0CSJmIjnmq6dX2UKGgGaAloD0MIi4nNxzWPb0CUhpRSlGgVTU8BaBZHQJImxawD/2l1fZQoaAZoCWgPQwipTDEHQWtyQJSGlFKUaBVNDQFoFkdAkicWtdRiw3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9qb2huZWJsYWtlL21hbWJhZm9yZ2UvZW52cy9zYjMvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3NiMy9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-debian-bookworm-sid #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa8e0228ca91ede6350bb9408aadbebc1b53edf3c64df53399473fb6e682ae2b
3
- size 148056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:939439c00f49d62e8df8fa8f7aa81a6beb568fe04facfdc6f5d1dd8baf3b2fdf
3
+ size 147484
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15020a3cb0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15020a3d40>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15020a3dd0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15020a3e60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f15020a3ef0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f15020a3f80>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15020a9050>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f15020a90e0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15020a9170>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15020a9200>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15020a9290>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f15020e4e10>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -41,13 +41,13 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 32,
45
- "num_timesteps": 3014656,
46
- "_total_timesteps": 3000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1670648843720080471,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,26 +56,26 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABAAAjZuXvV4z3T1DTDU+/E3cvv2apD0QnNY9AAAAAAAAAAAAKaU89s1KvACRsLzXZri70yaavbKhqLwAAIA/AACAP4BPPb19rLA/AWGjvg4nh77/+ri9LvSCvgAAAAAAAAAA5u9IvQ8Fdry+zG89nUpUPQZChr1daDo9AACAPwAAgD8zZ6A9RNUlPhLAHr4aarO+aYncvEPf8zsAAAAAAAAAAO1ZEz6jozs/W9kEPhpiC78NpF4+nTy9PAAAAAAAAAAAmiGuvF78gz2wvgE+viSyvlgH6z1mlmm8AAAAAAAAAADa2nA+QuthP01i0j7Uow+/agPgPkYIXz4AAAAAAAAAAPMcGj5ctrw+BpPKvVROy74dkRU+JNGSvQAAAAAAAAAAM4OTuko7kj+9Yes8hGEnv5a2gL1ipto7AAAAAAAAAAAA+cA8SC+UuvIGdLQ63fyva4/AuorWpDMAAIA/AACAP43HRT6kTXs/yXklPl/1F7/RnYY+sn6PPAAAAAAAAAAAzZGOPBa7YD3y8ZK+1miavr10M76T0e07AAAAAAAAAAAAHG08XNtvuutIKbMQy6qvH2bgOkCMyzMAAIA/AACAP2bRNr0Py3a8Os8MPkt5rruvn328o7XWPQAAgD8AAIA/M80DPaQL7j66/ww9+vbwvoaLmz3VhR+9AAAAAAAAAACDwoE+e2FqP7bfqz4H+yO/W83dPubqnj0AAAAAAAAAAE5bj74LNmI/zjfnvf+pCb/XIvO+9rA/PQAAAAAAAAAAmmGvu4EytD83ygq/imkOvhNzyzv9gPs9AAAAAAAAAAAABp08A4MwvHtFbL3unKY8u8mNPT6z0bsAAIA/AACAP5Z5Zr77Xy0/vsYOvuDQEr/f662+Ec6kPQAAAAAAAAAAJhCxvXENY7k67Co66yWdMxM4+7lW4UizAACAPwAAAABztoo9SLOmuoOFCjO09gCxInruuUdiv7MAAIA/AACAP4B3Pj3wopg/QwVzPoDwJb9G9Iw9ZOoIPgAAAAAAAAAA4I8MPqAokD6H15i+3pa6vuIzU7vmRri9AAAAAAAAAAAzMW48MY5LPhanID4Mf8q+5uQPPvp7hD0AAAAAAAAAALMZxz2f2Z8/xZ7sPkqZHr+FD+Q9vhWVPgAAAAAAAAAAgLXKvY/WyT6FOLo95PvzvgPeWb22t6c9AAAAAAAAAACNo3Y+j7M1vF3Lb7pT9jM4TQqbvZm3jTkAAAAAAAAAABpzYb3hXpK652FEO3OHuzcqrTQ7JtEZugAAAAAAAAAAgGNSvY80Qrz0gpU5b4Z5PGS7u71ty009AACAPwAAgD/NQUY+2lKnP8Ju/D7HAyC/BTubPl3kCz4AAAAAAAAAAJR0lGIu"
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gASVqAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSyCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDIAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAlHSUYi4="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsg3cgbpacECUhpRSlIwBbJRLwowBdJRHQKItDVjqfOF1fZQoaAZoCWgPQwg1zxH5rqRxQJSGlFKUaBVLvGgWR0CiLSoXKr7wdX2UKGgGaAloD0MIjdKlfwk3c0CUhpRSlGgVS9hoFkdAoi1QNI9TxXV9lChoBmgJaA9DCA5mE2DYrG9AlIaUUpRoFUu9aBZHQKItVGEwnIB1fZQoaAZoCWgPQwhR9SudD9pwQJSGlFKUaBVL3GgWR0CiLbju0CzUdX2UKGgGaAloD0MIAma+g99hcUCUhpRSlGgVS9ZoFkdAoi3/CwbEP3V9lChoBmgJaA9DCG3IPzMI83FAlIaUUpRoFUvCaBZHQKIt/4D9wWF1fZQoaAZoCWgPQwhYx/FD5d5xQJSGlFKUaBVL72gWR0CiLjKkl/pddX2UKGgGaAloD0MIF/TeGMIOdECUhpRSlGgVS9JoFkdAoi44Krq+rXV9lChoBmgJaA9DCBlybD3DPXFAlIaUUpRoFUvWaBZHQKIuODK5kLB1fZQoaAZoCWgPQwjF5uPaEEpzQJSGlFKUaBVL52gWR0CiLjv1lGwzdX2UKGgGaAloD0MIvtnmxvT9cECUhpRSlGgVS89oFkdAoi6bXe3x4XV9lChoBmgJaA9DCKQYINHE9nFAlIaUUpRoFUvkaBZHQKIuqN2ki2V1fZQoaAZoCWgPQwi/1xAcl8dxQJSGlFKUaBVLuWgWR0CiLq4axX4kdX2UKGgGaAloD0MIZeJWQcyYcECUhpRSlGgVS8JoFkdAoi68Mw1zhnV9lChoBmgJaA9DCP8iaMzkt3JAlIaUUpRoFUvlaBZHQKIu2QwsXi11fZQoaAZoCWgPQwietdsutJZzQJSGlFKUaBVLzWgWR0CiLwCEpRXPdX2UKGgGaAloD0MI7PfEOtVjckCUhpRSlGgVS7loFkdAoi9TZDiOvXV9lChoBmgJaA9DCKoQj8QLPXBAlIaUUpRoFUvNaBZHQKIvjQgs9Sx1fZQoaAZoCWgPQwh6jV2i+tFxQJSGlFKUaBVLyWgWR0CiL5JT2nKodX2UKGgGaAloD0MIIorJG2DqcECUhpRSlGgVS7RoFkdAoi+dUIcBEXV9lChoBmgJaA9DCBpqFJKMrHFAlIaUUpRoFUvQaBZHQKIvnTdcjaB1fZQoaAZoCWgPQwgmcVZETdlzQJSGlFKUaBVL02gWR0CiL7AIIF/ydX2UKGgGaAloD0MI5+RFJmCocECUhpRSlGgVS8VoFkdAoi+/JRwZO3V9lChoBmgJaA9DCNKqlnQU8nFAlIaUUpRoFUvmaBZHQKIvv003wTd1fZQoaAZoCWgPQwjLFHMQ9OtuQJSGlFKUaBVL2GgWR0CiL95eqrBCdX2UKGgGaAloD0MI7iJMUS5BcECUhpRSlGgVS85oFkdAojANyimEXnV9lChoBmgJaA9DCGnhsgqbmnNAlIaUUpRoFUuzaBZHQKIwNBrN4aB1fZQoaAZoCWgPQwh1zHnGvhlTQJSGlFKUaBVLgWgWR0CiMIyOq//OdX2UKGgGaAloD0MIvqHw2XqbcUCUhpRSlGgVS75oFkdAojCR0r9VFXV9lChoBmgJaA9DCJp7SPieJ3JAlIaUUpRoFUvHaBZHQKIwmqUeMhp1fZQoaAZoCWgPQwju7gG6L0RzQJSGlFKUaBVL4mgWR0CiMJrIgeRxdX2UKGgGaAloD0MIfqg0YmYQckCUhpRSlGgVS91oFkdAojDFwWFewHV9lChoBmgJaA9DCNvC81IxnW9AlIaUUpRoFUvJaBZHQKIw71DjR2N1fZQoaAZoCWgPQwj4GKw4Fb9zQJSGlFKUaBVL0WgWR0CiMQ7FS88LdX2UKGgGaAloD0MIpOTVOYbQbkCUhpRSlGgVS7loFkdAojFKJyhi9nV9lChoBmgJaA9DCHTudr00LHJAlIaUUpRoFUu+aBZHQKIxY7FKkEd1fZQoaAZoCWgPQwilETP7PL9xQJSGlFKUaBVLsmgWR0CiMWrYoRZmdX2UKGgGaAloD0MI3KD2W/sKcECUhpRSlGgVS9BoFkdAojF4Ly+YdHV9lChoBmgJaA9DCN3PKchPI3BAlIaUUpRoFUvCaBZHQKIxrWoWHk91fZQoaAZoCWgPQwgniSXlbv5uQJSGlFKUaBVL0mgWR0CiMgUJOWSmdX2UKGgGaAloD0MI66nVV5ffcECUhpRSlGgVS75oFkdAojITELpiZ3V9lChoBmgJaA9DCHfYRGbuF3FAlIaUUpRoFUu/aBZHQKIyPGpda+x1fZQoaAZoCWgPQwhssHCSJsVyQJSGlFKUaBVLwWgWR0CiMmM2eg+RdX2UKGgGaAloD0MIlfCEXv+VckCUhpRSlGgVS71oFkdAojJ9k8Rtg3V9lChoBmgJaA9DCD4l58SeM3NAlIaUUpRoFUvTaBZHQKIyjuvUz9F1fZQoaAZoCWgPQwihhm9hHe9xQJSGlFKUaBVL22gWR0CiMsEhib2EdX2UKGgGaAloD0MI7QvohbuicUCUhpRSlGgVS7NoFkdAojL9+1Bt13V9lChoBmgJaA9DCEFF1a+0GnBAlIaUUpRoFUu4aBZHQKIzD4B3iaR1fZQoaAZoCWgPQwjMtz6s9+lxQJSGlFKUaBVLv2gWR0CiMz1xS5y3dX2UKGgGaAloD0MIFY4glWJ8cECUhpRSlGgVS79oFkdAojNRouf29XV9lChoBmgJaA9DCEGDTZ0HcXFAlIaUUpRoFUvIaBZHQKIzW690zTF1fZQoaAZoCWgPQwjtKqT8ZJBxQJSGlFKUaBVL12gWR0CiM3BlDneSdX2UKGgGaAloD0MIMNY3MHkbdECUhpRSlGgVS8loFkdAojOScf/3nXV9lChoBmgJaA9DCC3uPzKdx3FAlIaUUpRoFUvJaBZHQKIzkmgrYoR1fZQoaAZoCWgPQwh2492RcXtxQJSGlFKUaBVL32gWR0CiNC8ZtNzsdX2UKGgGaAloD0MIbhRZa+hcckCUhpRSlGgVS7toFkdAojRBp5/smnV9lChoBmgJaA9DCAA5YcKo3XFAlIaUUpRoFUu+aBZHQKI0W+t8uz11fZQoaAZoCWgPQwgSo+cWet1xQJSGlFKUaBVLuGgWR0CiNHUfYBeYdX2UKGgGaAloD0MIv7hUpS0NcECUhpRSlGgVS+ZoFkdAojTLLQokRnV9lChoBmgJaA9DCNsxdVf2ZW9AlIaUUpRoFUvgaBZHQKI1Gdfb9Ih1fZQoaAZoCWgPQwjgumJGeIpxQJSGlFKUaBVL/mgWR0CiNSzSkTHsdX2UKGgGaAloD0MIHo1D/S4fckCUhpRSlGgVS+JoFkdAojU5OnEVFnV9lChoBmgJaA9DCPhu88YJpXFAlIaUUpRoFUu9aBZHQKI1RYISlFd1fZQoaAZoCWgPQwilg/V/jlVxQJSGlFKUaBVLvWgWR0CiNWTjWCmNdX2UKGgGaAloD0MIgVt381S2VECUhpRSlGgVS5xoFkdAojVyO7xusXV9lChoBmgJaA9DCGh6ibHMcW9AlIaUUpRoFUviaBZHQKI1oVSGahJ1fZQoaAZoCWgPQwhPIOwUKwhxQJSGlFKUaBVL4WgWR0CiNcBFVktmdX2UKGgGaAloD0MIg94bQ4B6cUCUhpRSlGgVS91oFkdAojYfmNipenV9lChoBmgJaA9DCN6Th4Ua9HJAlIaUUpRoFUuyaBZHQKI2O4SYgJV1fZQoaAZoCWgPQwgG1nH8kPtxQJSGlFKUaBVL6GgWR0CiNkdFfAsTdX2UKGgGaAloD0MI2QbuQF2fckCUhpRSlGgVS8loFkdAojZRprULD3V9lChoBmgJaA9DCOKQDaQLeHJAlIaUUpRoFUvbaBZHQKI2VgR9PUN1fZQoaAZoCWgPQwjnw7MEGftxQJSGlFKUaBVLuGgWR0CiNoUhNdqtdX2UKGgGaAloD0MI91j60EUOcECUhpRSlGgVS81oFkdAojafDFZPmHV9lChoBmgJaA9DCAd+VMP+W3BAlIaUUpRoFUvUaBZHQKI3ToIv8Il1fZQoaAZoCWgPQwiughjoGtByQJSGlFKUaBVL4mgWR0CiN1uQp4KQdX2UKGgGaAloD0MIk1M7wxRRc0CUhpRSlGgVS8xoFkdAojdkKCxu9HV9lChoBmgJaA9DCFN7EW1HVXFAlIaUUpRoFUvIaBZHQKI3j0uDjBF1fZQoaAZoCWgPQwi0ccRa/KhuQJSGlFKUaBVLwmgWR0CiN6e/Yao/dX2UKGgGaAloD0MIJEOOrecSc0CUhpRSlGgVS85oFkdAojgO/pMYdnV9lChoBmgJaA9DCHjxfty+MHFAlIaUUpRoFUvoaBZHQKI4D1B+nZV1fZQoaAZoCWgPQwjOUNzxplRwQJSGlFKUaBVL22gWR0CiOBsM7U5NdX2UKGgGaAloD0MI0c5pFqjTc0CUhpRSlGgVS+BoFkdAojgqFwkxAXV9lChoBmgJaA9DCMkDkUXafnJAlIaUUpRoFUvBaBZHQKI4a3x4IKN1fZQoaAZoCWgPQwhJEoQrIJNxQJSGlFKUaBVL4WgWR0CiOH+evpyIdX2UKGgGaAloD0MIlstG53ybcECUhpRSlGgVS8ZoFkdAojjKt/4Ir3V9lChoBmgJaA9DCA9kPbX6pGlAlIaUUpRoFU3oA2gWR0CiONcEFGG3dX2UKGgGaAloD0MIQ3HHm3wAcECUhpRSlGgVS9NoFkdAojlmPq9oOHV9lChoBmgJaA9DCC7m54amqXNAlIaUUpRoFUvpaBZHQKI5dh7Vrh11fZQoaAZoCWgPQwhKea2ErrxxQJSGlFKUaBVL8GgWR0CiOYFtCRfXdX2UKGgGaAloD0MIodtLGqNWcUCUhpRSlGgVS8VoFkdAojmBZU1hs3V9lChoBmgJaA9DCHef46NFP29AlIaUUpRoFUvSaBZHQKI5uNp/PPd1fZQoaAZoCWgPQwjMDBtl/bdyQJSGlFKUaBVLymgWR0CiOcTCLuQZdX2UKGgGaAloD0MIVp+rrVidcECUhpRSlGgVS9ZoFkdAojnE6xPfsXV9lChoBmgJaA9DCILF4cxvQXFAlIaUUpRoFUvbaBZHQKI5zYywfQt1fZQoaAZoCWgPQwiUvaWcr/twQJSGlFKUaBVLvmgWR0CiOi5HNHH4dX2UKGgGaAloD0MIlDMUd7z6ckCUhpRSlGgVS9doFkdAojozLpzLfXV9lChoBmgJaA9DCIp0P6dg/nJAlIaUUpRoFUvoaBZHQKI6Tqu8sc11fZQoaAZoCWgPQwgTQ3IyMbxyQJSGlFKUaBVLyGgWR0CiOpJr1uiwdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 368,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b44d28560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b44d285f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b44d28680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b44d28710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1b44d287a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1b44d28830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b44d288c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1b44d28950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b44d289e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b44d28a70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b44d28b00>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f1b44d7c4b0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671304055932690326,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAAPqhvR5Ewj5yrBy8KqZBvngcmLw70lA9AAAAAAAAAADaANE98acjPI0Ndb6qUFS+HlKhveiU/zwAAAAAAAAAAO3thz4UXkY/7n4ZPis+rr5GqzE+JYYJvgAAAAAAAAAAjUCsvVrzoD9ow9K+Fwuzvkq/8r02MXu+AAAAAAAAAABA28E+gbkBPwIs1b1KKKm+OpkUPp5TWb0AAAAAAAAAACY2ej5Opos/qDOxPoYO7L47roc+E6UXvQAAAAAAAAAA89WEvaf3Fj52fYQ+H/BTvs+UiT3JGrE8AAAAAAAAAACOOYG+Tt47P3PILD7Am5q+SQ/rvdOBDj4AAAAAAAAAAG3oDD6l9hI+Laa1vZ+niL72TZO8SFSvPQAAAAAAAAAAGht4vRu0ZD8dMhM9cQG8vhaAZL0ag/a7AAAAAAAAAABadvw9ZG2+Ph3F272eO5W+SEimO1NATbwAAAAAAAAAACbMKT7Uesg+4V8svp0Vkb7ECe68inGgOAAAAAAAAAAAGh7AvdVzxD6pEwM8XRlSvtsMib0xciO9AAAAAAAAAAD44q6+INpvP16+x71L3ai+PnGrvoIfNT0AAAAAAAAAAGZqyj4J81E/pNAXPa2inr5re6g+FU9KvgAAAAAAAAAAGhzGvaa9mz8KIoW+G/a6vnWnEr61eMC9AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm1lLAWkjbUCUhpRSlIwBbJRNDAGMAXSUR0CRy4Hj6vaDdX2UKGgGaAloD0MIYVW9/I52cECUhpRSlGgVTXoBaBZHQJHLvuSfUWl1fZQoaAZoCWgPQwg7/gsEAWZvQJSGlFKUaBVNPgFoFkdAkcwmLpA2RHV9lChoBmgJaA9DCAPN59zt/nBAlIaUUpRoFU05AWgWR0CRzFRGtp22dX2UKGgGaAloD0MIg/bq46GKcUCUhpRSlGgVTXcBaBZHQJHMXLZBcA11fZQoaAZoCWgPQwjri4S23B1yQJSGlFKUaBVNUAFoFkdAkc1OIEbHZXV9lChoBmgJaA9DCN2x2CaV4nFAlIaUUpRoFU0wAWgWR0CRzW4oJAt4dX2UKGgGaAloD0MIWwacpeQKb0CUhpRSlGgVTYUBaBZHQJHOBJsfq5d1fZQoaAZoCWgPQwhvL2mM1g5vQJSGlFKUaBVNEwNoFkdAkc6ur6tT1nV9lChoBmgJaA9DCCCXOPKACHFAlIaUUpRoFU0gAWgWR0CRztstkFwDdX2UKGgGaAloD0MITRWMSmr+bUCUhpRSlGgVTQ4BaBZHQJHQscDKYAt1fZQoaAZoCWgPQwhLd9fZkCs5QJSGlFKUaBVL42gWR0CR0hscQyyldX2UKGgGaAloD0MIw9fXutRkbECUhpRSlGgVTTQBaBZHQJHSoiosI3R1fZQoaAZoCWgPQwh39L9cy2NyQJSGlFKUaBVNUQFoFkdAkdMe67NB4XV9lChoBmgJaA9DCPMAFvl1W3BAlIaUUpRoFU0oAWgWR0CR08CDEm6YdX2UKGgGaAloD0MIXvI/+TtKcUCUhpRSlGgVTR4BaBZHQJHT/keZG8V1fZQoaAZoCWgPQwgHlbiOsZtwQJSGlFKUaBVNAwFoFkdAkdQ8lkYoAnV9lChoBmgJaA9DCC2Xjc659XBAlIaUUpRoFU1DAWgWR0CR1EtjCpFTdX2UKGgGaAloD0MIMUW5NP72cUCUhpRSlGgVTWoBaBZHQJHUdCojv/l1fZQoaAZoCWgPQwgujzUjA+txQJSGlFKUaBVNQQFoFkdAkdTg44p+dHV9lChoBmgJaA9DCJOQSNv4rHBAlIaUUpRoFU0mAWgWR0CR1Txeb/fgdX2UKGgGaAloD0MI4V0u4rtAcUCUhpRSlGgVTS4BaBZHQJHWHRrrPdF1fZQoaAZoCWgPQwhWR450RitwQJSGlFKUaBVNHgFoFkdAkdaFDjR2KXV9lChoBmgJaA9DCM5uLZOhYnFAlIaUUpRoFU1JAWgWR0CR13qQzUI+dX2UKGgGaAloD0MIgV64c2Emb0CUhpRSlGgVTTgBaBZHQJHZMjKPn0V1fZQoaAZoCWgPQwhRacTMPsFxQJSGlFKUaBVNcgJoFkdAkdnl5v99+nV9lChoBmgJaA9DCMegE0IHWUNAlIaUUpRoFUvvaBZHQJHamQkona51fZQoaAZoCWgPQwiBW3fzVLdwQJSGlFKUaBVNTQFoFkdAkdszviLl3nV9lChoBmgJaA9DCITzqWNVeXJAlIaUUpRoFU0tAWgWR0CR3AUDdP+GdX2UKGgGaAloD0MI1xUzwhtZcECUhpRSlGgVTVoBaBZHQJHcN0p3HJd1fZQoaAZoCWgPQwh8urpj8e1xQJSGlFKUaBVNNQFoFkdAkdyfL9uP3nV9lChoBmgJaA9DCITTghe9Y3FAlIaUUpRoFU2NAmgWR0CR3MlAu7HydX2UKGgGaAloD0MIaK7TSEsRckCUhpRSlGgVTVsBaBZHQJHc0YXO4Xp1fZQoaAZoCWgPQwhUUiegyWRwQJSGlFKUaBVNOgFoFkdAkd3JUYKpk3V9lChoBmgJaA9DCEOSWb2DkHJAlIaUUpRoFU08AWgWR0CR3i+b3Gn5dX2UKGgGaAloD0MIchb2tMO4bkCUhpRSlGgVTWEBaBZHQJHeT8zhxYJ1fZQoaAZoCWgPQwjL94xEqH1xQJSGlFKUaBVNawFoFkdAkd5mS2Yv4HV9lChoBmgJaA9DCKyOHOlMBXFAlIaUUpRoFU0yAWgWR0CR3sSVnmJWdX2UKGgGaAloD0MIYr8n1ql/bECUhpRSlGgVTRABaBZHQJHg/zTWoWJ1fZQoaAZoCWgPQwihFK3ci1lwQJSGlFKUaBVNgQFoFkdAkeF4ZIg/1XV9lChoBmgJaA9DCIlhhzHpCnBAlIaUUpRoFU0ZAWgWR0CR4wbM5fdAdX2UKGgGaAloD0MIfjhIiHJUa0CUhpRSlGgVTbMBaBZHQJHkjLvCuU51fZQoaAZoCWgPQwgc7iO3JnZsQJSGlFKUaBVNZAFoFkdAkeTZDE3sHHV9lChoBmgJaA9DCMXkDTDzWFFAlIaUUpRoFUviaBZHQJHlizVtoBd1fZQoaAZoCWgPQwikiAyrOKVwQJSGlFKUaBVNOwFoFkdAkeXEs8PnS3V9lChoBmgJaA9DCFacai0MvHFAlIaUUpRoFU03AWgWR0CR5jSLqD9PdX2UKGgGaAloD0MIWoKMgEoNcECUhpRSlGgVTUEBaBZHQJHmtRR/EwZ1fZQoaAZoCWgPQwhkzcggNxBwQJSGlFKUaBVNVAFoFkdAkebEkKNQ03V9lChoBmgJaA9DCF4wuOaO5nFAlIaUUpRoFU0SAWgWR0CR5trksBhhdX2UKGgGaAloD0MIVOQQcfMmcUCUhpRSlGgVTXYBaBZHQJHm533YcvN1fZQoaAZoCWgPQwgUrkfhuuJwQJSGlFKUaBVNJgFoFkdAkgjHZsbednV9lChoBmgJaA9DCLX66qoAAXJAlIaUUpRoFU1OAWgWR0CSCVVrAP/adX2UKGgGaAloD0MINX9Ma9Ozb0CUhpRSlGgVTRMBaBZHQJIMZrKvFFV1fZQoaAZoCWgPQwiBCkeQShtvQJSGlFKUaBVNRwFoFkdAkgynuAqd6XV9lChoBmgJaA9DCGO1+X/VAXFAlIaUUpRoFU1cAWgWR0CSDN7b+Lm7dX2UKGgGaAloD0MI/DbEeI0Hc0CUhpRSlGgVTToBaBZHQJIPIAJb+tN1fZQoaAZoCWgPQwhCeR9Hc+NxQJSGlFKUaBVNPAFoFkdAkg+MwQDmsHV9lChoBmgJaA9DCDv7yoN0zXJAlIaUUpRoFU0EAWgWR0CSD9R3/xUedX2UKGgGaAloD0MI/l915Ej+b0CUhpRSlGgVTRMBaBZHQJIQJM23rlh1fZQoaAZoCWgPQwgf2scKfpBuQJSGlFKUaBVNKwFoFkdAkhEWW2PT5XV9lChoBmgJaA9DCEZfQZoxl3BAlIaUUpRoFU1GAWgWR0CSEWVDKHO9dX2UKGgGaAloD0MIIlUUr3IacECUhpRSlGgVTQ4BaBZHQJIRq/CZWq91fZQoaAZoCWgPQwimKm1xTQtxQJSGlFKUaBVNPQFoFkdAkhHHww0wanV9lChoBmgJaA9DCBgIAmSo7XFAlIaUUpRoFU1lAmgWR0CSEfhaC+URdX2UKGgGaAloD0MIS5ARUKGBckCUhpRSlGgVTRgBaBZHQJISklMRHwx1fZQoaAZoCWgPQwgQ5+EEpgNwQJSGlFKUaBVNCgFoFkdAkhVI42jwhHV9lChoBmgJaA9DCGNBYVCmv29AlIaUUpRoFU3hAWgWR0CSFV4GD+R6dX2UKGgGaAloD0MImyDqPoCbbUCUhpRSlGgVTSMBaBZHQJIVxY4hllN1fZQoaAZoCWgPQwg83Xni+WJyQJSGlFKUaBVNNwFoFkdAkhbO9rXUY3V9lChoBmgJaA9DCGTmApeHWXBAlIaUUpRoFU0yAmgWR0CSGB619fCzdX2UKGgGaAloD0MIgxQ8hRxIc0CUhpRSlGgVTRMBaBZHQJIZqEVWS2Z1fZQoaAZoCWgPQwi2ZFWE2+hwQJSGlFKUaBVNTQFoFkdAkhnZ0Syt3nV9lChoBmgJaA9DCEIlrmPc/21AlIaUUpRoFU0PAWgWR0CSGhtoi9qUdX2UKGgGaAloD0MISnmthC5MckCUhpRSlGgVTR8BaBZHQJIaZnctXgd1fZQoaAZoCWgPQwiel4qNeeVvQJSGlFKUaBVNUgFoFkdAkhpnNxEORXV9lChoBmgJaA9DCHeBkgILgHBAlIaUUpRoFU0UAWgWR0CSGp2sq8UVdX2UKGgGaAloD0MIRkJbzqWicECUhpRSlGgVTUoBaBZHQJIapnrY5DJ1fZQoaAZoCWgPQwg+IqZE0khxQJSGlFKUaBVNWwFoFkdAkhrp22XsxHV9lChoBmgJaA9DCOl8eJYgiU9AlIaUUpRoFUvZaBZHQJIcPZuhsZZ1fZQoaAZoCWgPQwgyryMOWRdyQJSGlFKUaBVNUwFoFkdAkhxFmapgkXV9lChoBmgJaA9DCLOaric6ZWxAlIaUUpRoFU1JAWgWR0CSHMm2b5M2dX2UKGgGaAloD0MIBD3UtuGPYUCUhpRSlGgVTegDaBZHQJIc0LG7z091fZQoaAZoCWgPQwg33bJD/NlxQJSGlFKUaBVL/GgWR0CSHTyP+4smdX2UKGgGaAloD0MIbF9AL9yGcECUhpRSlGgVTSoBaBZHQJIe2J+DvmZ1fZQoaAZoCWgPQwhsCI7LeIdxQJSGlFKUaBVNOAFoFkdAkiFvXTVlPXV9lChoBmgJaA9DCK6AQj29QnJAlIaUUpRoFU0XAWgWR0CSIkT6i0v5dX2UKGgGaAloD0MI5kAPte2AcUCUhpRSlGgVTScBaBZHQJIiWCYkVvd1fZQoaAZoCWgPQwgpBkg0AXtuQJSGlFKUaBVNJgFoFkdAkiKGYfGMoHV9lChoBmgJaA9DCDhm2ZPAImxAlIaUUpRoFU0vAWgWR0CSI3gV45cUdX2UKGgGaAloD0MIg6W6gBdWb0CUhpRSlGgVTTABaBZHQJIjtAfMfRx1fZQoaAZoCWgPQwiPqbuyC7xyQJSGlFKUaBVNngFoFkdAkiO+JLuhK3V9lChoBmgJaA9DCK7X9KAgCXJAlIaUUpRoFU1LAWgWR0CSJNaLGaQWdX2UKGgGaAloD0MIU13Ay4zPb0CUhpRSlGgVTVwBaBZHQJIlFme18b91fZQoaAZoCWgPQwjLZ3keXG1xQJSGlFKUaBVNEAFoFkdAkiWWQKa5PXV9lChoBmgJaA9DCK/NxkrM0HBAlIaUUpRoFU09AWgWR0CSJdQ40dildX2UKGgGaAloD0MI58b0hKXbcUCUhpRSlGgVTX0BaBZHQJIl5hkRSP51fZQoaAZoCWgPQwigUiXK3uxvQJSGlFKUaBVNPgFoFkdAkiXnUYsND3V9lChoBmgJaA9DCBTLLa0GuG9AlIaUUpRoFU0+AWgWR0CSJmIjnmq6dX2UKGgGaAloD0MIi4nNxzWPb0CUhpRSlGgVTU8BaBZHQJImxawD/2l1fZQoaAZoCWgPQwipTDEHQWtyQJSGlFKUaBVNDQFoFkdAkicWtdRiw3VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:54b6bf8a4b0b1a794556d3387298643614b9efbbd6e8583c7cec29750e65a2c2
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:721d1eca4810213954ffa03d9d74fc04e9f058f4c80f4d63f88e31940445bfe6
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:865174404ef6a0da5c12db42fc7a74171e3c8105adeff835175ad0489414267f
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7c4d6f610114c2f0a4d2b43132a3818f8eb00ad33584854d1d9cf73ad310e62
3
  size 43201
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-debian-bullseye-sid #1 SMP Wed Mar 2 00:30:59 UTC 2022
2
  Python: 3.7.12
3
  Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu117
5
  GPU Enabled: True
6
  Numpy: 1.21.6
7
  Gym: 0.21.0
 
1
+ OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-debian-bookworm-sid #1 SMP Wed Nov 23 01:01:46 UTC 2022
2
  Python: 3.7.12
3
  Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
  GPU Enabled: True
6
  Numpy: 1.21.6
7
  Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 257.8099568785143, "std_reward": 64.3270871430097, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T22:51:02.815533"}
 
1
+ {"mean_reward": 269.11696334492257, "std_reward": 21.26370572226596, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T12:35:13.441378"}