jaybeeja commited on
Commit
1bdd2a2
1 Parent(s): 76326f7

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 252.46 +/- 21.38
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2185899560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21858995f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2185899680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2185899710>", "_build": "<function ActorCriticPolicy._build at 0x7f21858997a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2185899830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21858998c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2185899950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21858999e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2185899a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2185899b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21858e87b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658941740.15011, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZfxL3DdRk5b8+uPPc6ibnfhtW7vLuPuAAAgD8AAIA/zbG5vI+WSbqOZZG68zs4tbXvqjtCYao5AACAPwAAgD+ahE++BSibPKidCz2+1fW6XY+6vqWa6TwAAIA/AACAP81kibyPwmu6mHKhO14ORzY1Yxi7wf+4ugAAgD8AAIA/8/+YPcxstT+5TEE+iV/jvmzmoz0G2rU9AAAAAAAAAADNF1E9wzlTurL+mbuyXOs2mDBYu/M4UbYAAIA/AACAPxpaEL4UrNc7oRkuPfqClLtDlD29jhqIPAAAgD8AAIA/TZ8wPa6ppro8vCa8g22sO+pHhzyR/KK8AACAPwAAgD9ADs69aUy4Pnh3DT1l0Em+T+rXvFIzBj4AAAAAAAAAAADtcL1cgxa6Wc2XO4oFHLhKvKm6mzBkuQAAgD8AAIA/AH8EPY9GHrpSLeU7TUEQNrq8lzrWWQg1AACAPwAAgD+akdk7CvxEu9Zxqzt3v4M8BnmMvKquYz0AAIA/AACAPwDVlD4EBu8+ln/6vtYZn74PIT094pmZvgAAAAAAAAAATVGXPUhtgLom9UQ7t5CuNr8J/ToYvmK6AACAPwAAgD+aWwA8TyNRvEX3TbwC3Io7RDy2PTTFgLwAAIA/AACAP+DFHL6pvzk9JlgYvplFZr4ghCC+hKo9PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDmd+NYd8Y0CUhpRSlIwBbJRN6AOMAXSUR0CAwC6IWP92dX2UKGgGaAloD0MIIHnnUIZIX0CUhpRSlGgVTegDaBZHQIDCY0ygwoN1fZQoaAZoCWgPQwh/2xMkttshwJSGlFKUaBVL6WgWR0CAwt9y925hdX2UKGgGaAloD0MI499nXDhFYUCUhpRSlGgVTegDaBZHQIDKP71qWTp1fZQoaAZoCWgPQwhTBDi9i8ZZQJSGlFKUaBVN6ANoFkdAgNIbtZ3cHnV9lChoBmgJaA9DCPTcQlcihGBAlIaUUpRoFU3oA2gWR0CA09JeVs1sdX2UKGgGaAloD0MIp3fxflxkZECUhpRSlGgVTegDaBZHQIDXBj6N2kl1fZQoaAZoCWgPQwiXVkPinnpiQJSGlFKUaBVN6ANoFkdAgNdBgNPP9nV9lChoBmgJaA9DCM7DCUynC2FAlIaUUpRoFU3oA2gWR0CA2bqJMxoJdX2UKGgGaAloD0MI/iyWInmUYkCUhpRSlGgVTegDaBZHQIDan+qBErp1fZQoaAZoCWgPQwiSlsrbEUtcQJSGlFKUaBVN6ANoFkdAgRyWEbo8p3V9lChoBmgJaA9DCBvXv+szOl1AlIaUUpRoFU3oA2gWR0CBH6SJTER8dX2UKGgGaAloD0MIN4sXC0P2XkCUhpRSlGgVTegDaBZHQIEg26Ae7tl1fZQoaAZoCWgPQwiemssNhgoWQJSGlFKUaBVLrWgWR0CBNIplz2eydX2UKGgGaAloD0MIQkP/BBfLVkCUhpRSlGgVTegDaBZHQIE10MAmzB11fZQoaAZoCWgPQwgH7kCd8tdaQJSGlFKUaBVN6ANoFkdAgTaRhttQ9HV9lChoBmgJaA9DCLix2ZFqaGNAlIaUUpRoFU3oA2gWR0CBR0Pxx1gZdX2UKGgGaAloD0MIDoP5K2TCOECUhpRSlGgVS8doFkdAgUxjlHSWq3V9lChoBmgJaA9DCKhzRSkhC2JAlIaUUpRoFU3oA2gWR0CBU0y7f51vdX2UKGgGaAloD0MIL058tSP2ZECUhpRSlGgVTegDaBZHQIFVpiTdLxt1fZQoaAZoCWgPQwjekEYFTmRbQJSGlFKUaBVN6ANoFkdAgVYaRp1zQ3V9lChoBmgJaA9DCOs6VFOSomJAlIaUUpRoFU3oA2gWR0CBXaQZGax5dX2UKGgGaAloD0MIKxIT1PCZOUCUhpRSlGgVS8FoFkdAgV4qB3A2ynV9lChoBmgJaA9DCF/tKM5RTWRAlIaUUpRoFU3oA2gWR0CBZegsbvPUdX2UKGgGaAloD0MIzcggdxGUU0CUhpRSlGgVTegDaBZHQIFnltIkJKJ1fZQoaAZoCWgPQwib/uxHivlgQJSGlFKUaBVN6ANoFkdAgWr5Bsyi23V9lChoBmgJaA9DCO7MBMM5KGJAlIaUUpRoFU3oA2gWR0CBazmbLEDRdX2UKGgGaAloD0MISnoYWh33YkCUhpRSlGgVTegDaBZHQIFuB35eqrB1fZQoaAZoCWgPQwgKoYMuYQdlQJSGlFKUaBVN6ANoFkdAgW7xiPQv6HV9lChoBmgJaA9DCH2tS43QEmFAlIaUUpRoFU3oA2gWR0CBtCZSeiBYdX2UKGgGaAloD0MIV3cstkkDYkCUhpRSlGgVTegDaBZHQIG3sALiMpB1fZQoaAZoCWgPQwieKAmJtAtSQJSGlFKUaBVN6ANoFkdAgdFLApKBd3V9lChoBmgJaA9DCMvz4O6samJAlIaUUpRoFU3oA2gWR0CB0jXoTwlTdX2UKGgGaAloD0MIuatXkdGIXECUhpRSlGgVTegDaBZHQIHrjRjSXt11fZQoaAZoCWgPQwhjnL8JhR1lQJSGlFKUaBVN6ANoFkdAgfMdo371qXV9lChoBmgJaA9DCKZIvhLI52FAlIaUUpRoFU3oA2gWR0CB9bX9R77bdX2UKGgGaAloD0MISZwVUZM4Y0CUhpRSlGgVTegDaBZHQIH2NrVOKwZ1fZQoaAZoCWgPQwh3MGKfgBNgQJSGlFKUaBVN6ANoFkdAgf5HoxHoYHV9lChoBmgJaA9DCOJ4PgPqu1RAlIaUUpRoFU3oA2gWR0CB/tO8CgbqdX2UKGgGaAloD0MIh6QWSqZbZECUhpRSlGgVTegDaBZHQIIGLBl+Vkd1fZQoaAZoCWgPQwjyCkRPytRcQJSGlFKUaBVN6ANoFkdAggfAn+hoNHV9lChoBmgJaA9DCBKhEWxcjltAlIaUUpRoFU3oA2gWR0CCCw+r2g3+dX2UKGgGaAloD0MIbt44KcwOYkCUhpRSlGgVTegDaBZHQIILTSJCSid1fZQoaAZoCWgPQwhEbRtGwfxgQJSGlFKUaBVN6ANoFkdAgg3KOT7l73V9lChoBmgJaA9DCKM6Hcj6dGNAlIaUUpRoFU3oA2gWR0CCDq8Djin6dX2UKGgGaAloD0MIL4fddww/MkCUhpRSlGgVS9RoFkdAghNH9m6GxnV9lChoBmgJaA9DCL2PozmyGFzAlIaUUpRoFUuBaBZHQII+yo4uK4x1fZQoaAZoCWgPQwglPneC/fRfQJSGlFKUaBVN6ANoFkdAglC9M9KVZHV9lChoBmgJaA9DCCmV8IRevWZAlIaUUpRoFU3oA2gWR0CCVBO8CgbqdX2UKGgGaAloD0MIoS5SKAtHXECUhpRSlGgVTegDaBZHQIJuz7MxGlR1fZQoaAZoCWgPQwgwZHWr59tiQJSGlFKUaBVN6ANoFkdAgm+/9Hc1wnV9lChoBmgJaA9DCIhlM4ckLmFAlIaUUpRoFU3oA2gWR0CCiPuuzQeFdX2UKGgGaAloD0MIjbW/sz0PYkCUhpRSlGgVTegDaBZHQIKQwvnKW9l1fZQoaAZoCWgPQwjfUPhsHR1dQJSGlFKUaBVN6ANoFkdAgpNvcafjCHV9lChoBmgJaA9DCImxTL/EBGFAlIaUUpRoFU3oA2gWR0CCk/p8F6iTdX2UKGgGaAloD0MIw2M/iyU6YUCUhpRSlGgVTegDaBZHQIKcOeUY8+11fZQoaAZoCWgPQwgPml33VvleQJSGlFKUaBVN6ANoFkdAgqjRbr1M/XV9lChoBmgJaA9DCGuBPSZS7GFAlIaUUpRoFU3oA2gWR0CCq4FWXC0odX2UKGgGaAloD0MIH9eGinH8YkCUhpRSlGgVTegDaBZHQIKwICuEEkl1fZQoaAZoCWgPQwiespquJ+FdQJSGlFKUaBVN6ANoFkdAgrBiiqQzUXV9lChoBmgJaA9DCEmBBTDldmFAlIaUUpRoFU3oA2gWR0CCs2Q176YWdX2UKGgGaAloD0MIz79d9mt1YECUhpRSlGgVTegDaBZHQIK52VNYbKl1fZQoaAZoCWgPQwi13JkJhntYQJSGlFKUaBVN6ANoFkdAguccKPXCj3V9lChoBmgJaA9DCD3X9+Egt09AlIaUUpRoFUvRaBZHQILn6fDk2gp1fZQoaAZoCWgPQwi932jHjYVhQJSGlFKUaBVN6ANoFkdAgvn/VAiV0XV9lChoBmgJaA9DCI178xsmmllAlIaUUpRoFU3oA2gWR0CC/VDaXa8IdX2UKGgGaAloD0MIRYMUPIXkLECUhpRSlGgVS5poFkdAgw2wBo24u3V9lChoBmgJaA9DCNqR6js/qWZAlIaUUpRoFU3oA2gWR0CDFn2alUIcdX2UKGgGaAloD0MI9PkoI64+YkCUhpRSlGgVTegDaBZHQIMXX5xiobZ1fZQoaAZoCWgPQwhbs5WX/DliQJSGlFKUaBVN6ANoFkdAgy6NutOmBXV9lChoBmgJaA9DCEt2bATiZmJAlIaUUpRoFU3oA2gWR0CDNbtm+TNddX2UKGgGaAloD0MIc4OhDqs4Y0CUhpRSlGgVTegDaBZHQIM4IztTkyV1fZQoaAZoCWgPQwiX/brTHR1hQJSGlFKUaBVN6ANoFkdAgzigiV0LdHV9lChoBmgJaA9DCIuMDkhCm2BAlIaUUpRoFU3oA2gWR0CDQIjxCpm3dX2UKGgGaAloD0MIQ3QIHIneZ0CUhpRSlGgVTegDaBZHQINJJBkZrHl1fZQoaAZoCWgPQwhs7uh/uQdhQJSGlFKUaBVN6ANoFkdAg07MzMzMzXV9lChoBmgJaA9DCGFvYkjOcGFAlIaUUpRoFU3oA2gWR0CDTxA2Q4jsdX2UKGgGaAloD0MIxAq3fKSnYECUhpRSlGgVTegDaBZHQINSOr2g3991fZQoaAZoCWgPQwjajxSRYYUvQJSGlFKUaBVL1GgWR0CDWLEit7rtdX2UKGgGaAloD0MIhUAuceQqXECUhpRSlGgVTegDaBZHQINZPj81n/V1fZQoaAZoCWgPQwiYNbHAV/FiQJSGlFKUaBVN6ANoFkdAg2FD3VTaTXV9lChoBmgJaA9DCOs4fqg052NAlIaUUpRoFU3oA2gWR0CDYgJhvze5dX2UKGgGaAloD0MI7Ny0GadnQ0CUhpRSlGgVS7FoFkdAg5pIcBEKE3V9lChoBmgJaA9DCIYeMXruC2dAlIaUUpRoFU3oA2gWR0CDmtGnXNC7dX2UKGgGaAloD0MIAaWhRiFqYkCUhpRSlGgVTegDaBZHQIOrEoUi6hB1fZQoaAZoCWgPQwiuKZDZWZ9bQJSGlFKUaBVN6ANoFkdAg7NCHqNZNnV9lChoBmgJaA9DCFsIclDCGGVAlIaUUpRoFU3oA2gWR0CDtBFtKqXGdX2UKGgGaAloD0MIRrbz/VSHYkCUhpRSlGgVTegDaBZHQIPKy4UeuFJ1fZQoaAZoCWgPQwhPBdzz/JhmQJSGlFKUaBVN6ANoFkdAg9H5eAuqWHV9lChoBmgJaA9DCDP7PEb51mFAlIaUUpRoFU3oA2gWR0CD1FvtMPBjdX2UKGgGaAloD0MImWa610nnXUCUhpRSlGgVTegDaBZHQIPU3HHWBjF1fZQoaAZoCWgPQwgKEAUzprg6QJSGlFKUaBVLimgWR0CD5M8cuJ1rdX2UKGgGaAloD0MI7Ggc6nfeZECUhpRSlGgVTegDaBZHQIPlrQXyiEh1fZQoaAZoCWgPQwimmllLARpeQJSGlFKUaBVN6ANoFkdAg+usM7U5MnV9lChoBmgJaA9DCMi2DDjLlGJAlIaUUpRoFU3oA2gWR0CD6/KVY6n0dX2UKGgGaAloD0MI+zvbozcQPkCUhpRSlGgVS8toFkdAg+1dtEXtSnV9lChoBmgJaA9DCIro19ZP1mVAlIaUUpRoFU3oA2gWR0CD7xVBD5TIdX2UKGgGaAloD0MId9oaEYzeZkCUhpRSlGgVTegDaBZHQIP1gLqlgtx1fZQoaAZoCWgPQwjMJyuGq75jQJSGlFKUaBVN6ANoFkdAg/X03wTdtXV9lChoBmgJaA9DCBud81McSWZAlIaUUpRoFU3oA2gWR0CD/bAu7HyVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8734de12632baa5fae87e1a5e170ad73fc36ed4842eddfe9a9b28a5e595d051f
3
+ size 147126
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2185899560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21858995f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2185899680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2185899710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f21858997a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2185899830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21858998c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2185899950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21858999e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2185899a70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2185899b00>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f21858e87b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1658941740.15011,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZfxL3DdRk5b8+uPPc6ibnfhtW7vLuPuAAAgD8AAIA/zbG5vI+WSbqOZZG68zs4tbXvqjtCYao5AACAPwAAgD+ahE++BSibPKidCz2+1fW6XY+6vqWa6TwAAIA/AACAP81kibyPwmu6mHKhO14ORzY1Yxi7wf+4ugAAgD8AAIA/8/+YPcxstT+5TEE+iV/jvmzmoz0G2rU9AAAAAAAAAADNF1E9wzlTurL+mbuyXOs2mDBYu/M4UbYAAIA/AACAPxpaEL4UrNc7oRkuPfqClLtDlD29jhqIPAAAgD8AAIA/TZ8wPa6ppro8vCa8g22sO+pHhzyR/KK8AACAPwAAgD9ADs69aUy4Pnh3DT1l0Em+T+rXvFIzBj4AAAAAAAAAAADtcL1cgxa6Wc2XO4oFHLhKvKm6mzBkuQAAgD8AAIA/AH8EPY9GHrpSLeU7TUEQNrq8lzrWWQg1AACAPwAAgD+akdk7CvxEu9Zxqzt3v4M8BnmMvKquYz0AAIA/AACAPwDVlD4EBu8+ln/6vtYZn74PIT094pmZvgAAAAAAAAAATVGXPUhtgLom9UQ7t5CuNr8J/ToYvmK6AACAPwAAgD+aWwA8TyNRvEX3TbwC3Io7RDy2PTTFgLwAAIA/AACAP+DFHL6pvzk9JlgYvplFZr4ghCC+hKo9PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDmd+NYd8Y0CUhpRSlIwBbJRN6AOMAXSUR0CAwC6IWP92dX2UKGgGaAloD0MIIHnnUIZIX0CUhpRSlGgVTegDaBZHQIDCY0ygwoN1fZQoaAZoCWgPQwh/2xMkttshwJSGlFKUaBVL6WgWR0CAwt9y925hdX2UKGgGaAloD0MI499nXDhFYUCUhpRSlGgVTegDaBZHQIDKP71qWTp1fZQoaAZoCWgPQwhTBDi9i8ZZQJSGlFKUaBVN6ANoFkdAgNIbtZ3cHnV9lChoBmgJaA9DCPTcQlcihGBAlIaUUpRoFU3oA2gWR0CA09JeVs1sdX2UKGgGaAloD0MIp3fxflxkZECUhpRSlGgVTegDaBZHQIDXBj6N2kl1fZQoaAZoCWgPQwiXVkPinnpiQJSGlFKUaBVN6ANoFkdAgNdBgNPP9nV9lChoBmgJaA9DCM7DCUynC2FAlIaUUpRoFU3oA2gWR0CA2bqJMxoJdX2UKGgGaAloD0MI/iyWInmUYkCUhpRSlGgVTegDaBZHQIDan+qBErp1fZQoaAZoCWgPQwiSlsrbEUtcQJSGlFKUaBVN6ANoFkdAgRyWEbo8p3V9lChoBmgJaA9DCBvXv+szOl1AlIaUUpRoFU3oA2gWR0CBH6SJTER8dX2UKGgGaAloD0MIN4sXC0P2XkCUhpRSlGgVTegDaBZHQIEg26Ae7tl1fZQoaAZoCWgPQwiemssNhgoWQJSGlFKUaBVLrWgWR0CBNIplz2eydX2UKGgGaAloD0MIQkP/BBfLVkCUhpRSlGgVTegDaBZHQIE10MAmzB11fZQoaAZoCWgPQwgH7kCd8tdaQJSGlFKUaBVN6ANoFkdAgTaRhttQ9HV9lChoBmgJaA9DCLix2ZFqaGNAlIaUUpRoFU3oA2gWR0CBR0Pxx1gZdX2UKGgGaAloD0MIDoP5K2TCOECUhpRSlGgVS8doFkdAgUxjlHSWq3V9lChoBmgJaA9DCKhzRSkhC2JAlIaUUpRoFU3oA2gWR0CBU0y7f51vdX2UKGgGaAloD0MIL058tSP2ZECUhpRSlGgVTegDaBZHQIFVpiTdLxt1fZQoaAZoCWgPQwjekEYFTmRbQJSGlFKUaBVN6ANoFkdAgVYaRp1zQ3V9lChoBmgJaA9DCOs6VFOSomJAlIaUUpRoFU3oA2gWR0CBXaQZGax5dX2UKGgGaAloD0MIKxIT1PCZOUCUhpRSlGgVS8FoFkdAgV4qB3A2ynV9lChoBmgJaA9DCF/tKM5RTWRAlIaUUpRoFU3oA2gWR0CBZegsbvPUdX2UKGgGaAloD0MIzcggdxGUU0CUhpRSlGgVTegDaBZHQIFnltIkJKJ1fZQoaAZoCWgPQwib/uxHivlgQJSGlFKUaBVN6ANoFkdAgWr5Bsyi23V9lChoBmgJaA9DCO7MBMM5KGJAlIaUUpRoFU3oA2gWR0CBazmbLEDRdX2UKGgGaAloD0MISnoYWh33YkCUhpRSlGgVTegDaBZHQIFuB35eqrB1fZQoaAZoCWgPQwgKoYMuYQdlQJSGlFKUaBVN6ANoFkdAgW7xiPQv6HV9lChoBmgJaA9DCH2tS43QEmFAlIaUUpRoFU3oA2gWR0CBtCZSeiBYdX2UKGgGaAloD0MIV3cstkkDYkCUhpRSlGgVTegDaBZHQIG3sALiMpB1fZQoaAZoCWgPQwieKAmJtAtSQJSGlFKUaBVN6ANoFkdAgdFLApKBd3V9lChoBmgJaA9DCMvz4O6samJAlIaUUpRoFU3oA2gWR0CB0jXoTwlTdX2UKGgGaAloD0MIuatXkdGIXECUhpRSlGgVTegDaBZHQIHrjRjSXt11fZQoaAZoCWgPQwhjnL8JhR1lQJSGlFKUaBVN6ANoFkdAgfMdo371qXV9lChoBmgJaA9DCKZIvhLI52FAlIaUUpRoFU3oA2gWR0CB9bX9R77bdX2UKGgGaAloD0MISZwVUZM4Y0CUhpRSlGgVTegDaBZHQIH2NrVOKwZ1fZQoaAZoCWgPQwh3MGKfgBNgQJSGlFKUaBVN6ANoFkdAgf5HoxHoYHV9lChoBmgJaA9DCOJ4PgPqu1RAlIaUUpRoFU3oA2gWR0CB/tO8CgbqdX2UKGgGaAloD0MIh6QWSqZbZECUhpRSlGgVTegDaBZHQIIGLBl+Vkd1fZQoaAZoCWgPQwjyCkRPytRcQJSGlFKUaBVN6ANoFkdAggfAn+hoNHV9lChoBmgJaA9DCBKhEWxcjltAlIaUUpRoFU3oA2gWR0CCCw+r2g3+dX2UKGgGaAloD0MIbt44KcwOYkCUhpRSlGgVTegDaBZHQIILTSJCSid1fZQoaAZoCWgPQwhEbRtGwfxgQJSGlFKUaBVN6ANoFkdAgg3KOT7l73V9lChoBmgJaA9DCKM6Hcj6dGNAlIaUUpRoFU3oA2gWR0CCDq8Djin6dX2UKGgGaAloD0MIL4fddww/MkCUhpRSlGgVS9RoFkdAghNH9m6GxnV9lChoBmgJaA9DCL2PozmyGFzAlIaUUpRoFUuBaBZHQII+yo4uK4x1fZQoaAZoCWgPQwglPneC/fRfQJSGlFKUaBVN6ANoFkdAglC9M9KVZHV9lChoBmgJaA9DCCmV8IRevWZAlIaUUpRoFU3oA2gWR0CCVBO8CgbqdX2UKGgGaAloD0MIoS5SKAtHXECUhpRSlGgVTegDaBZHQIJuz7MxGlR1fZQoaAZoCWgPQwgwZHWr59tiQJSGlFKUaBVN6ANoFkdAgm+/9Hc1wnV9lChoBmgJaA9DCIhlM4ckLmFAlIaUUpRoFU3oA2gWR0CCiPuuzQeFdX2UKGgGaAloD0MIjbW/sz0PYkCUhpRSlGgVTegDaBZHQIKQwvnKW9l1fZQoaAZoCWgPQwjfUPhsHR1dQJSGlFKUaBVN6ANoFkdAgpNvcafjCHV9lChoBmgJaA9DCImxTL/EBGFAlIaUUpRoFU3oA2gWR0CCk/p8F6iTdX2UKGgGaAloD0MIw2M/iyU6YUCUhpRSlGgVTegDaBZHQIKcOeUY8+11fZQoaAZoCWgPQwgPml33VvleQJSGlFKUaBVN6ANoFkdAgqjRbr1M/XV9lChoBmgJaA9DCGuBPSZS7GFAlIaUUpRoFU3oA2gWR0CCq4FWXC0odX2UKGgGaAloD0MIH9eGinH8YkCUhpRSlGgVTegDaBZHQIKwICuEEkl1fZQoaAZoCWgPQwiespquJ+FdQJSGlFKUaBVN6ANoFkdAgrBiiqQzUXV9lChoBmgJaA9DCEmBBTDldmFAlIaUUpRoFU3oA2gWR0CCs2Q176YWdX2UKGgGaAloD0MIz79d9mt1YECUhpRSlGgVTegDaBZHQIK52VNYbKl1fZQoaAZoCWgPQwi13JkJhntYQJSGlFKUaBVN6ANoFkdAguccKPXCj3V9lChoBmgJaA9DCD3X9+Egt09AlIaUUpRoFUvRaBZHQILn6fDk2gp1fZQoaAZoCWgPQwi932jHjYVhQJSGlFKUaBVN6ANoFkdAgvn/VAiV0XV9lChoBmgJaA9DCI178xsmmllAlIaUUpRoFU3oA2gWR0CC/VDaXa8IdX2UKGgGaAloD0MIRYMUPIXkLECUhpRSlGgVS5poFkdAgw2wBo24u3V9lChoBmgJaA9DCNqR6js/qWZAlIaUUpRoFU3oA2gWR0CDFn2alUIcdX2UKGgGaAloD0MI9PkoI64+YkCUhpRSlGgVTegDaBZHQIMXX5xiobZ1fZQoaAZoCWgPQwhbs5WX/DliQJSGlFKUaBVN6ANoFkdAgy6NutOmBXV9lChoBmgJaA9DCEt2bATiZmJAlIaUUpRoFU3oA2gWR0CDNbtm+TNddX2UKGgGaAloD0MIc4OhDqs4Y0CUhpRSlGgVTegDaBZHQIM4IztTkyV1fZQoaAZoCWgPQwiX/brTHR1hQJSGlFKUaBVN6ANoFkdAgzigiV0LdHV9lChoBmgJaA9DCIuMDkhCm2BAlIaUUpRoFU3oA2gWR0CDQIjxCpm3dX2UKGgGaAloD0MIQ3QIHIneZ0CUhpRSlGgVTegDaBZHQINJJBkZrHl1fZQoaAZoCWgPQwhs7uh/uQdhQJSGlFKUaBVN6ANoFkdAg07MzMzMzXV9lChoBmgJaA9DCGFvYkjOcGFAlIaUUpRoFU3oA2gWR0CDTxA2Q4jsdX2UKGgGaAloD0MIxAq3fKSnYECUhpRSlGgVTegDaBZHQINSOr2g3991fZQoaAZoCWgPQwjajxSRYYUvQJSGlFKUaBVL1GgWR0CDWLEit7rtdX2UKGgGaAloD0MIhUAuceQqXECUhpRSlGgVTegDaBZHQINZPj81n/V1fZQoaAZoCWgPQwiYNbHAV/FiQJSGlFKUaBVN6ANoFkdAg2FD3VTaTXV9lChoBmgJaA9DCOs4fqg052NAlIaUUpRoFU3oA2gWR0CDYgJhvze5dX2UKGgGaAloD0MI7Ny0GadnQ0CUhpRSlGgVS7FoFkdAg5pIcBEKE3V9lChoBmgJaA9DCIYeMXruC2dAlIaUUpRoFU3oA2gWR0CDmtGnXNC7dX2UKGgGaAloD0MIAaWhRiFqYkCUhpRSlGgVTegDaBZHQIOrEoUi6hB1fZQoaAZoCWgPQwiuKZDZWZ9bQJSGlFKUaBVN6ANoFkdAg7NCHqNZNnV9lChoBmgJaA9DCFsIclDCGGVAlIaUUpRoFU3oA2gWR0CDtBFtKqXGdX2UKGgGaAloD0MIRrbz/VSHYkCUhpRSlGgVTegDaBZHQIPKy4UeuFJ1fZQoaAZoCWgPQwhPBdzz/JhmQJSGlFKUaBVN6ANoFkdAg9H5eAuqWHV9lChoBmgJaA9DCDP7PEb51mFAlIaUUpRoFU3oA2gWR0CD1FvtMPBjdX2UKGgGaAloD0MImWa610nnXUCUhpRSlGgVTegDaBZHQIPU3HHWBjF1fZQoaAZoCWgPQwgKEAUzprg6QJSGlFKUaBVLimgWR0CD5M8cuJ1rdX2UKGgGaAloD0MI7Ggc6nfeZECUhpRSlGgVTegDaBZHQIPlrQXyiEh1fZQoaAZoCWgPQwimmllLARpeQJSGlFKUaBVN6ANoFkdAg+usM7U5MnV9lChoBmgJaA9DCMi2DDjLlGJAlIaUUpRoFU3oA2gWR0CD6/KVY6n0dX2UKGgGaAloD0MI+zvbozcQPkCUhpRSlGgVS8toFkdAg+1dtEXtSnV9lChoBmgJaA9DCIro19ZP1mVAlIaUUpRoFU3oA2gWR0CD7xVBD5TIdX2UKGgGaAloD0MId9oaEYzeZkCUhpRSlGgVTegDaBZHQIP1gLqlgtx1fZQoaAZoCWgPQwjMJyuGq75jQJSGlFKUaBVN6ANoFkdAg/X03wTdtXV9lChoBmgJaA9DCBud81McSWZAlIaUUpRoFU3oA2gWR0CD/bAu7HyVdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0364ffbcb9f57b093e7daa56dc8a99d638dd96ef4482b95cd9df1f0d05b92b07
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f096fadee51ec352ea72d7c588130ca559a0d8af32242ec40dbf9835bd540e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (233 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.46028627490256, "std_reward": 21.37611131368571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T17:25:42.634821"}