Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.53 +/- 0.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7c584aaf91f840140e7ad0c0aa5b3702c6f22e07f7f978cc6e47adbbd2e5df5
|
3 |
+
size 107555
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe68b787310>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe68b7fafc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1680234418053479399,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnrHCPiBIh70fkBQ/nrHCPiBIh70fkBQ/nrHCPiBIh70fkBQ/nrHCPiBIh70fkBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaW9rPg25nD+05bo+4I1APn/vvb+2hUe/AfMcv4HYnr68ZkQ+Z/L6vq/Inj4STh++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACescI+IEiHvR+QFD9bYBg97pHCu4Md5jyescI+IEiHvR+QFD9bYBg97pHCu4Md5jyescI+IEiHvR+QFD9bYBg97pHCu4Md5jyescI+IEiHvR+QFD9bYBg97pHCu4Md5jyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.38026136 -0.06605554 0.5803241 ]\n [ 0.38026136 -0.06605554 0.5803241 ]\n [ 0.38026136 -0.06605554 0.5803241 ]\n [ 0.38026136 -0.06605554 0.5803241 ]]",
|
60 |
+
"desired_goal": "[[ 0.22991718 1.2243973 0.36503375]\n [ 0.18804121 -1.4838713 -0.779384 ]\n [-0.61308295 -0.31024554 0.19179815]\n [-0.49013063 0.31012484 -0.15557125]]",
|
61 |
+
"observation": "[[ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]\n [ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]\n [ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]\n [ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhHqGvVESKD0izJQ+EeWOve5SFD7cE04+HWQQPmw/Cj4IomE+GJBIPZZMED62ZQ0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.06566337 0.04103309 0.2906199 ]\n [-0.06977285 0.1448476 0.20124763]\n [ 0.1410069 0.13500756 0.22034466]\n [ 0.04896554 0.14091715 0.13808331]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPDJWm/93BcCUhpRSlIwBbJRLMowBdJRHQKCQXFXq7iB1fZQoaAZoCWgPQwh+AFKbOLkFwJSGlFKUaBVLMmgWR0CgkCdDIBBBdX2UKGgGaAloD0MIO/vKg/QEEsCUhpRSlGgVSzJoFkdAoI/y3gDRt3V9lChoBmgJaA9DCIQPJVryGBDAlIaUUpRoFUsyaBZHQKCPvOFg2Ih1fZQoaAZoCWgPQwjsMCb9vYQRwJSGlFKUaBVLMmgWR0CgkRPS+g14dX2UKGgGaAloD0MIh78ma9TDCcCUhpRSlGgVSzJoFkdAoJDewiaAnXV9lChoBmgJaA9DCOWc2EP7aBbAlIaUUpRoFUsyaBZHQKCQqmk30f51fZQoaAZoCWgPQwgqWONsOsIJwJSGlFKUaBVLMmgWR0CgkHR7AtWddX2UKGgGaAloD0MIZOYCl8ea9b+UhpRSlGgVSzJoFkdAoJHwhOgxrXV9lChoBmgJaA9DCGeZRSi2gg3AlIaUUpRoFUsyaBZHQKCRu6FuejF1fZQoaAZoCWgPQwjuPzIdOh0JwJSGlFKUaBVLMmgWR0CgkYdGy5ZsdX2UKGgGaAloD0MIF4BG6dJ//r+UhpRSlGgVSzJoFkdAoJFRWvKU3XV9lChoBmgJaA9DCHKG4o43aRDAlIaUUpRoFUsyaBZHQKCSwwB5ooN1fZQoaAZoCWgPQwjOpiOAm2UPwJSGlFKUaBVLMmgWR0Cgko3wb2lEdX2UKGgGaAloD0MISUp6GFrtEsCUhpRSlGgVSzJoFkdAoJJZg9eQdXV9lChoBmgJaA9DCMhe7/543xbAlIaUUpRoFUsyaBZHQKCSI47Rv3t1fZQoaAZoCWgPQwiDGVOwxhnxv5SGlFKUaBVLMmgWR0Cgk6MN+b3HdX2UKGgGaAloD0MI5rFmZJD7DcCUhpRSlGgVSzJoFkdAoJNuB6KLsXV9lChoBmgJaA9DCJ7TLNDu0AjAlIaUUpRoFUsyaBZHQKCTOZwXIlt1fZQoaAZoCWgPQwicielCrL77v5SGlFKUaBVLMmgWR0CgkwQA2hqTdX2UKGgGaAloD0MIvaYHBaVoEcCUhpRSlGgVSzJoFkdAoJSAiA2AG3V9lChoBmgJaA9DCNOiPskd9gHAlIaUUpRoFUsyaBZHQKCUTANXo1V1fZQoaAZoCWgPQwhUNqypLMoKwJSGlFKUaBVLMmgWR0CglBfOD8LsdX2UKGgGaAloD0MI9wX0wp2rA8CUhpRSlGgVSzJoFkdAoJPh4lhPTHV9lChoBmgJaA9DCHrjpDDvcQfAlIaUUpRoFUsyaBZHQKCVTMyrPt51fZQoaAZoCWgPQwhUqdkDrcAFwJSGlFKUaBVLMmgWR0CglRfIsAeadX2UKGgGaAloD0MIW+1hLxRwB8CUhpRSlGgVSzJoFkdAoJTjcynDSHV9lChoBmgJaA9DCP94r1qZMBTAlIaUUpRoFUsyaBZHQKCUrX+2mYV1fZQoaAZoCWgPQwgzNJ4I4twKwJSGlFKUaBVLMmgWR0Cglg65Xlr/dX2UKGgGaAloD0MIeXjPgeUIDsCUhpRSlGgVSzJoFkdAoJXZqqOtGXV9lChoBmgJaA9DCGnEzD6P0QHAlIaUUpRoFUsyaBZHQKCVpUn5SFZ1fZQoaAZoCWgPQwgMWkjA6BIOwJSGlFKUaBVLMmgWR0CglW9oWYWtdX2UKGgGaAloD0MITtNnB1x3EcCUhpRSlGgVSzJoFkdAoJbs+eOGTXV9lChoBmgJaA9DCO0OKQZIVBXAlIaUUpRoFUsyaBZHQKCWt+wTufF1fZQoaAZoCWgPQwgqHaz/c8gQwJSGlFKUaBVLMmgWR0CgloP/7zkIdX2UKGgGaAloD0MIi/uPTIeuBcCUhpRSlGgVSzJoFkdAoJZON1hb4nV9lChoBmgJaA9DCJ2AJsKG5wnAlIaUUpRoFUsyaBZHQKCXz+fAbhp1fZQoaAZoCWgPQwjzdK4oJcT4v5SGlFKUaBVLMmgWR0Cgl5svZh8ZdX2UKGgGaAloD0MIJ4Oj5NUZDsCUhpRSlGgVSzJoFkdAoJdmyJKraXV9lChoBmgJaA9DCKLUXkTbMQ/AlIaUUpRoFUsyaBZHQKCXMNXHR1J1fZQoaAZoCWgPQwjTMlLvqXwUwJSGlFKUaBVLMmgWR0CgmKNdRiw0dX2UKGgGaAloD0MIppvEILASD8CUhpRSlGgVSzJoFkdAoJhuSW7e23V9lChoBmgJaA9DCOtVZHRAMgjAlIaUUpRoFUsyaBZHQKCYOdOIqLF1fZQoaAZoCWgPQwgTglX18lsNwJSGlFKUaBVLMmgWR0CgmAPbXYlIdX2UKGgGaAloD0MIsirCTUY1C8CUhpRSlGgVSzJoFkdAoJlZhKDkEXV9lChoBmgJaA9DCO4/Mh06/QXAlIaUUpRoFUsyaBZHQKCZJKTSssB1fZQoaAZoCWgPQwhJZvUOt2MIwJSGlFKUaBVLMmgWR0CgmPBCUorndX2UKGgGaAloD0MIc9u+R/01DsCUhpRSlGgVSzJoFkdAoJi6Us4DLnV9lChoBmgJaA9DCDIepRKesAjAlIaUUpRoFUsyaBZHQKCaGaOxSpB1fZQoaAZoCWgPQwihv9AjRt8SwJSGlFKUaBVLMmgWR0CgmeSNOuaGdX2UKGgGaAloD0MI4UIewY0UEsCUhpRSlGgVSzJoFkdAoJmwJTl1bXV9lChoBmgJaA9DCEOOrWcIxwjAlIaUUpRoFUsyaBZHQKCZemALApN1fZQoaAZoCWgPQwiwPbMkQP0TwJSGlFKUaBVLMmgWR0CgmufCAMDwdX2UKGgGaAloD0MIAfkSKjgsEMCUhpRSlGgVSzJoFkdAoJqyrBCUo3V9lChoBmgJaA9DCMXleAWi5wTAlIaUUpRoFUsyaBZHQKCafkMkQf91fZQoaAZoCWgPQwicNXhflSsSwJSGlFKUaBVLMmgWR0CgmkhttQ9BdX2UKGgGaAloD0MIH0yKj09oB8CUhpRSlGgVSzJoFkdAoJu+PYFqz3V9lChoBmgJaA9DCF71gHnItAHAlIaUUpRoFUsyaBZHQKCbiYixFAp1fZQoaAZoCWgPQwhsIchBCZMNwJSGlFKUaBVLMmgWR0Cgm1UlJHy3dX2UKGgGaAloD0MIDVUxlX4CD8CUhpRSlGgVSzJoFkdAoJsfLeQ+2XV9lChoBmgJaA9DCHkfR3NkRQ/AlIaUUpRoFUsyaBZHQKCcfrC3w1B1fZQoaAZoCWgPQwgRqWkX08wMwJSGlFKUaBVLMmgWR0CgnEmkWRA9dX2UKGgGaAloD0MIeUDZlCtsEcCUhpRSlGgVSzJoFkdAoJwVOEdvKnV9lChoBmgJaA9DCA8qcR3jigzAlIaUUpRoFUsyaBZHQKCb305EMLF1fZQoaAZoCWgPQwiGG/D5YYTyv5SGlFKUaBVLMmgWR0CgnUIV2zOYdX2UKGgGaAloD0MIRKLQsu7fEsCUhpRSlGgVSzJoFkdAoJ0NARkEtHV9lChoBmgJaA9DCM138BMH8APAlIaUUpRoFUsyaBZHQKCc2KaXrt51fZQoaAZoCWgPQwiE8j6O5ugLwJSGlFKUaBVLMmgWR0CgnKLjxTbWdX2UKGgGaAloD0MIwvf+Bu0VCMCUhpRSlGgVSzJoFkdAoJ4KBbwBo3V9lChoBmgJaA9DCHzRHi+kg/G/lIaUUpRoFUsyaBZHQKCd1U4JeE91fZQoaAZoCWgPQwgXEjC6vFkAwJSGlFKUaBVLMmgWR0CgnaDlYEGJdX2UKGgGaAloD0MIBVCMLJnDE8CUhpRSlGgVSzJoFkdAoJ1rDbah6HV9lChoBmgJaA9DCJnYfFwb6hXAlIaUUpRoFUsyaBZHQKCe5w0fozN1fZQoaAZoCWgPQwheSIeHMN4BwJSGlFKUaBVLMmgWR0CgnrIP9UCJdX2UKGgGaAloD0MIjpQtknZDAsCUhpRSlGgVSzJoFkdAoJ5+PcSGrXV9lChoBmgJaA9DCGTJHMu7CgPAlIaUUpRoFUsyaBZHQKCeSFZgXuV1fZQoaAZoCWgPQwjZQLrYtHIRwJSGlFKUaBVLMmgWR0Cgn6o1UEPldX2UKGgGaAloD0MIdH0fDhJCDcCUhpRSlGgVSzJoFkdAoJ91yeZof3V9lChoBmgJaA9DCJM3wMx3MArAlIaUUpRoFUsyaBZHQKCfQWqtHQR1fZQoaAZoCWgPQwiOIQA49mwLwJSGlFKUaBVLMmgWR0Cgnwtz0Yj0dX2UKGgGaAloD0MIWTUIc7tHFMCUhpRSlGgVSzJoFkdAoKCFPacqfHV9lChoBmgJaA9DCLoSgeofJAXAlIaUUpRoFUsyaBZHQKCgUGCZnct1fZQoaAZoCWgPQwje5SK+EzP6v5SGlFKUaBVLMmgWR0CgoBySV4X5dX2UKGgGaAloD0MIVI80uK1NGMCUhpRSlGgVSzJoFkdAoJ/mlKsdUHV9lChoBmgJaA9DCB6HwfwVkgnAlIaUUpRoFUsyaBZHQKChS7Rv3rV1fZQoaAZoCWgPQwj8x0J0CBwMwJSGlFKUaBVLMmgWR0CgoRbCiyprdX2UKGgGaAloD0MIF0hQ/BiTCsCUhpRSlGgVSzJoFkdAoKDiWeHzpXV9lChoBmgJaA9DCAFNhA1Pb/m/lIaUUpRoFUsyaBZHQKCgrPBzmwJ1fZQoaAZoCWgPQwhRhxVu+QgOwJSGlFKUaBVLMmgWR0Cgog4yoGY8dX2UKGgGaAloD0MIbeaQ1ELpCsCUhpRSlGgVSzJoFkdAoKHZGax5cHV9lChoBmgJaA9DCA8om3KFhxDAlIaUUpRoFUsyaBZHQKChpLIxQBR1fZQoaAZoCWgPQwj1TC8xlikQwJSGlFKUaBVLMmgWR0CgoW7C79Q5dX2UKGgGaAloD0MIRkJbzqVYA8CUhpRSlGgVSzJoFkdAoKLK9AX2unV9lChoBmgJaA9DCBMLfEW33hTAlIaUUpRoFUsyaBZHQKCilfdAPd51fZQoaAZoCWgPQwiDT3PyIhMHwJSGlFKUaBVLMmgWR0CgomG6XjU/dX2UKGgGaAloD0MIOV6B6El5FMCUhpRSlGgVSzJoFkdAoKIrxVhkRXV9lChoBmgJaA9DCI9SCU/otQ/AlIaUUpRoFUsyaBZHQKCjktHQQcx1fZQoaAZoCWgPQwhcctwpHewBwJSGlFKUaBVLMmgWR0Cgo13CsOoYdX2UKGgGaAloD0MIWHGqtTCLBcCUhpRSlGgVSzJoFkdAoKMpe3QUpXV9lChoBmgJaA9DCPqYDwh0BhXAlIaUUpRoFUsyaBZHQKCi84pc5bR1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba1374ccd92bb7748ac8285bad4d3a1faca053b21dc16f07d50dfcd47f47296b
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ed0936e3ff8653b77fa02ce9d0963c7216c6abf4ad274564910df9c0497df79
|
3 |
+
size 45502
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.24.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe68b787310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe68b7fafc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680234418053479399, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnrHCPiBIh70fkBQ/nrHCPiBIh70fkBQ/nrHCPiBIh70fkBQ/nrHCPiBIh70fkBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaW9rPg25nD+05bo+4I1APn/vvb+2hUe/AfMcv4HYnr68ZkQ+Z/L6vq/Inj4STh++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACescI+IEiHvR+QFD9bYBg97pHCu4Md5jyescI+IEiHvR+QFD9bYBg97pHCu4Md5jyescI+IEiHvR+QFD9bYBg97pHCu4Md5jyescI+IEiHvR+QFD9bYBg97pHCu4Md5jyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38026136 -0.06605554 0.5803241 ]\n [ 0.38026136 -0.06605554 0.5803241 ]\n [ 0.38026136 -0.06605554 0.5803241 ]\n [ 0.38026136 -0.06605554 0.5803241 ]]", "desired_goal": "[[ 0.22991718 1.2243973 0.36503375]\n [ 0.18804121 -1.4838713 -0.779384 ]\n [-0.61308295 -0.31024554 0.19179815]\n [-0.49013063 0.31012484 -0.15557125]]", "observation": "[[ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]\n [ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]\n [ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]\n [ 0.38026136 -0.06605554 0.5803241 0.03720127 -0.00593781 0.02809024]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhHqGvVESKD0izJQ+EeWOve5SFD7cE04+HWQQPmw/Cj4IomE+GJBIPZZMED62ZQ0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06566337 0.04103309 0.2906199 ]\n [-0.06977285 0.1448476 0.20124763]\n [ 0.1410069 0.13500756 0.22034466]\n [ 0.04896554 0.14091715 0.13808331]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPDJWm/93BcCUhpRSlIwBbJRLMowBdJRHQKCQXFXq7iB1fZQoaAZoCWgPQwh+AFKbOLkFwJSGlFKUaBVLMmgWR0CgkCdDIBBBdX2UKGgGaAloD0MIO/vKg/QEEsCUhpRSlGgVSzJoFkdAoI/y3gDRt3V9lChoBmgJaA9DCIQPJVryGBDAlIaUUpRoFUsyaBZHQKCPvOFg2Ih1fZQoaAZoCWgPQwjsMCb9vYQRwJSGlFKUaBVLMmgWR0CgkRPS+g14dX2UKGgGaAloD0MIh78ma9TDCcCUhpRSlGgVSzJoFkdAoJDewiaAnXV9lChoBmgJaA9DCOWc2EP7aBbAlIaUUpRoFUsyaBZHQKCQqmk30f51fZQoaAZoCWgPQwgqWONsOsIJwJSGlFKUaBVLMmgWR0CgkHR7AtWddX2UKGgGaAloD0MIZOYCl8ea9b+UhpRSlGgVSzJoFkdAoJHwhOgxrXV9lChoBmgJaA9DCGeZRSi2gg3AlIaUUpRoFUsyaBZHQKCRu6FuejF1fZQoaAZoCWgPQwjuPzIdOh0JwJSGlFKUaBVLMmgWR0CgkYdGy5ZsdX2UKGgGaAloD0MIF4BG6dJ//r+UhpRSlGgVSzJoFkdAoJFRWvKU3XV9lChoBmgJaA9DCHKG4o43aRDAlIaUUpRoFUsyaBZHQKCSwwB5ooN1fZQoaAZoCWgPQwjOpiOAm2UPwJSGlFKUaBVLMmgWR0Cgko3wb2lEdX2UKGgGaAloD0MISUp6GFrtEsCUhpRSlGgVSzJoFkdAoJJZg9eQdXV9lChoBmgJaA9DCMhe7/543xbAlIaUUpRoFUsyaBZHQKCSI47Rv3t1fZQoaAZoCWgPQwiDGVOwxhnxv5SGlFKUaBVLMmgWR0Cgk6MN+b3HdX2UKGgGaAloD0MI5rFmZJD7DcCUhpRSlGgVSzJoFkdAoJNuB6KLsXV9lChoBmgJaA9DCJ7TLNDu0AjAlIaUUpRoFUsyaBZHQKCTOZwXIlt1fZQoaAZoCWgPQwicielCrL77v5SGlFKUaBVLMmgWR0CgkwQA2hqTdX2UKGgGaAloD0MIvaYHBaVoEcCUhpRSlGgVSzJoFkdAoJSAiA2AG3V9lChoBmgJaA9DCNOiPskd9gHAlIaUUpRoFUsyaBZHQKCUTANXo1V1fZQoaAZoCWgPQwhUNqypLMoKwJSGlFKUaBVLMmgWR0CglBfOD8LsdX2UKGgGaAloD0MI9wX0wp2rA8CUhpRSlGgVSzJoFkdAoJPh4lhPTHV9lChoBmgJaA9DCHrjpDDvcQfAlIaUUpRoFUsyaBZHQKCVTMyrPt51fZQoaAZoCWgPQwhUqdkDrcAFwJSGlFKUaBVLMmgWR0CglRfIsAeadX2UKGgGaAloD0MIW+1hLxRwB8CUhpRSlGgVSzJoFkdAoJTjcynDSHV9lChoBmgJaA9DCP94r1qZMBTAlIaUUpRoFUsyaBZHQKCUrX+2mYV1fZQoaAZoCWgPQwgzNJ4I4twKwJSGlFKUaBVLMmgWR0Cglg65Xlr/dX2UKGgGaAloD0MIeXjPgeUIDsCUhpRSlGgVSzJoFkdAoJXZqqOtGXV9lChoBmgJaA9DCGnEzD6P0QHAlIaUUpRoFUsyaBZHQKCVpUn5SFZ1fZQoaAZoCWgPQwgMWkjA6BIOwJSGlFKUaBVLMmgWR0CglW9oWYWtdX2UKGgGaAloD0MITtNnB1x3EcCUhpRSlGgVSzJoFkdAoJbs+eOGTXV9lChoBmgJaA9DCO0OKQZIVBXAlIaUUpRoFUsyaBZHQKCWt+wTufF1fZQoaAZoCWgPQwgqHaz/c8gQwJSGlFKUaBVLMmgWR0CgloP/7zkIdX2UKGgGaAloD0MIi/uPTIeuBcCUhpRSlGgVSzJoFkdAoJZON1hb4nV9lChoBmgJaA9DCJ2AJsKG5wnAlIaUUpRoFUsyaBZHQKCXz+fAbhp1fZQoaAZoCWgPQwjzdK4oJcT4v5SGlFKUaBVLMmgWR0Cgl5svZh8ZdX2UKGgGaAloD0MIJ4Oj5NUZDsCUhpRSlGgVSzJoFkdAoJdmyJKraXV9lChoBmgJaA9DCKLUXkTbMQ/AlIaUUpRoFUsyaBZHQKCXMNXHR1J1fZQoaAZoCWgPQwjTMlLvqXwUwJSGlFKUaBVLMmgWR0CgmKNdRiw0dX2UKGgGaAloD0MIppvEILASD8CUhpRSlGgVSzJoFkdAoJhuSW7e23V9lChoBmgJaA9DCOtVZHRAMgjAlIaUUpRoFUsyaBZHQKCYOdOIqLF1fZQoaAZoCWgPQwgTglX18lsNwJSGlFKUaBVLMmgWR0CgmAPbXYlIdX2UKGgGaAloD0MIsirCTUY1C8CUhpRSlGgVSzJoFkdAoJlZhKDkEXV9lChoBmgJaA9DCO4/Mh06/QXAlIaUUpRoFUsyaBZHQKCZJKTSssB1fZQoaAZoCWgPQwhJZvUOt2MIwJSGlFKUaBVLMmgWR0CgmPBCUorndX2UKGgGaAloD0MIc9u+R/01DsCUhpRSlGgVSzJoFkdAoJi6Us4DLnV9lChoBmgJaA9DCDIepRKesAjAlIaUUpRoFUsyaBZHQKCaGaOxSpB1fZQoaAZoCWgPQwihv9AjRt8SwJSGlFKUaBVLMmgWR0CgmeSNOuaGdX2UKGgGaAloD0MI4UIewY0UEsCUhpRSlGgVSzJoFkdAoJmwJTl1bXV9lChoBmgJaA9DCEOOrWcIxwjAlIaUUpRoFUsyaBZHQKCZemALApN1fZQoaAZoCWgPQwiwPbMkQP0TwJSGlFKUaBVLMmgWR0CgmufCAMDwdX2UKGgGaAloD0MIAfkSKjgsEMCUhpRSlGgVSzJoFkdAoJqyrBCUo3V9lChoBmgJaA9DCMXleAWi5wTAlIaUUpRoFUsyaBZHQKCafkMkQf91fZQoaAZoCWgPQwicNXhflSsSwJSGlFKUaBVLMmgWR0CgmkhttQ9BdX2UKGgGaAloD0MIH0yKj09oB8CUhpRSlGgVSzJoFkdAoJu+PYFqz3V9lChoBmgJaA9DCF71gHnItAHAlIaUUpRoFUsyaBZHQKCbiYixFAp1fZQoaAZoCWgPQwhsIchBCZMNwJSGlFKUaBVLMmgWR0Cgm1UlJHy3dX2UKGgGaAloD0MIDVUxlX4CD8CUhpRSlGgVSzJoFkdAoJsfLeQ+2XV9lChoBmgJaA9DCHkfR3NkRQ/AlIaUUpRoFUsyaBZHQKCcfrC3w1B1fZQoaAZoCWgPQwgRqWkX08wMwJSGlFKUaBVLMmgWR0CgnEmkWRA9dX2UKGgGaAloD0MIeUDZlCtsEcCUhpRSlGgVSzJoFkdAoJwVOEdvKnV9lChoBmgJaA9DCA8qcR3jigzAlIaUUpRoFUsyaBZHQKCb305EMLF1fZQoaAZoCWgPQwiGG/D5YYTyv5SGlFKUaBVLMmgWR0CgnUIV2zOYdX2UKGgGaAloD0MIRKLQsu7fEsCUhpRSlGgVSzJoFkdAoJ0NARkEtHV9lChoBmgJaA9DCM138BMH8APAlIaUUpRoFUsyaBZHQKCc2KaXrt51fZQoaAZoCWgPQwiE8j6O5ugLwJSGlFKUaBVLMmgWR0CgnKLjxTbWdX2UKGgGaAloD0MIwvf+Bu0VCMCUhpRSlGgVSzJoFkdAoJ4KBbwBo3V9lChoBmgJaA9DCHzRHi+kg/G/lIaUUpRoFUsyaBZHQKCd1U4JeE91fZQoaAZoCWgPQwgXEjC6vFkAwJSGlFKUaBVLMmgWR0CgnaDlYEGJdX2UKGgGaAloD0MIBVCMLJnDE8CUhpRSlGgVSzJoFkdAoJ1rDbah6HV9lChoBmgJaA9DCJnYfFwb6hXAlIaUUpRoFUsyaBZHQKCe5w0fozN1fZQoaAZoCWgPQwheSIeHMN4BwJSGlFKUaBVLMmgWR0CgnrIP9UCJdX2UKGgGaAloD0MIjpQtknZDAsCUhpRSlGgVSzJoFkdAoJ5+PcSGrXV9lChoBmgJaA9DCGTJHMu7CgPAlIaUUpRoFUsyaBZHQKCeSFZgXuV1fZQoaAZoCWgPQwjZQLrYtHIRwJSGlFKUaBVLMmgWR0Cgn6o1UEPldX2UKGgGaAloD0MIdH0fDhJCDcCUhpRSlGgVSzJoFkdAoJ91yeZof3V9lChoBmgJaA9DCJM3wMx3MArAlIaUUpRoFUsyaBZHQKCfQWqtHQR1fZQoaAZoCWgPQwiOIQA49mwLwJSGlFKUaBVLMmgWR0Cgnwtz0Yj0dX2UKGgGaAloD0MIWTUIc7tHFMCUhpRSlGgVSzJoFkdAoKCFPacqfHV9lChoBmgJaA9DCLoSgeofJAXAlIaUUpRoFUsyaBZHQKCgUGCZnct1fZQoaAZoCWgPQwje5SK+EzP6v5SGlFKUaBVLMmgWR0CgoBySV4X5dX2UKGgGaAloD0MIVI80uK1NGMCUhpRSlGgVSzJoFkdAoJ/mlKsdUHV9lChoBmgJaA9DCB6HwfwVkgnAlIaUUpRoFUsyaBZHQKChS7Rv3rV1fZQoaAZoCWgPQwj8x0J0CBwMwJSGlFKUaBVLMmgWR0CgoRbCiyprdX2UKGgGaAloD0MIF0hQ/BiTCsCUhpRSlGgVSzJoFkdAoKDiWeHzpXV9lChoBmgJaA9DCAFNhA1Pb/m/lIaUUpRoFUsyaBZHQKCgrPBzmwJ1fZQoaAZoCWgPQwhRhxVu+QgOwJSGlFKUaBVLMmgWR0Cgog4yoGY8dX2UKGgGaAloD0MIbeaQ1ELpCsCUhpRSlGgVSzJoFkdAoKHZGax5cHV9lChoBmgJaA9DCA8om3KFhxDAlIaUUpRoFUsyaBZHQKChpLIxQBR1fZQoaAZoCWgPQwj1TC8xlikQwJSGlFKUaBVLMmgWR0CgoW7C79Q5dX2UKGgGaAloD0MIRkJbzqVYA8CUhpRSlGgVSzJoFkdAoKLK9AX2unV9lChoBmgJaA9DCBMLfEW33hTAlIaUUpRoFUsyaBZHQKCilfdAPd51fZQoaAZoCWgPQwiDT3PyIhMHwJSGlFKUaBVLMmgWR0CgomG6XjU/dX2UKGgGaAloD0MIOV6B6El5FMCUhpRSlGgVSzJoFkdAoKIrxVhkRXV9lChoBmgJaA9DCI9SCU/otQ/AlIaUUpRoFUsyaBZHQKCjktHQQcx1fZQoaAZoCWgPQwhcctwpHewBwJSGlFKUaBVLMmgWR0Cgo13CsOoYdX2UKGgGaAloD0MIWHGqtTCLBcCUhpRSlGgVSzJoFkdAoKMpe3QUpXV9lChoBmgJaA9DCPqYDwh0BhXAlIaUUpRoFUsyaBZHQKCi84pc5bR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (820 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.5302151441574097, "std_reward": 0.9820936364233739, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T22:24:22.233277"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:273435d667a1398aecc64922da653794f65c6d37588192e7ae2bd0f79e7fd213
|
3 |
+
size 3212
|