jaweed123 commited on
Commit
1baa185
·
1 Parent(s): be60e00

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:301c646c60c31498b4c23ecd3841caecac8f73e86556c3733cd26c122a8232ef
3
+ size 124147
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e4201c60d30>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e4201c57700>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698537365392384006,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA600wP5vexj5ie089la2VvzxqpL9ie089DlEpvz0O+z4nmU89JWRNPw7Zgz9JqE89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaDidPCWPmL+5DIy/Nhcpv7xJN7+ieos+4L96v34dXT4sVGo/6xDPv1TT1D/dbTI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABCTyXAdZDev98O+T90Cd6+ErqSPSbWZb1biu8/600wP5vexj5ie089mByou5sE07x/o/67Gu2jPNPahjyNYa48+srwu/IgBLyxjuE7voeJPpsokz9gPEO/8TH1PRK6+T0nGjo9tQz5vpWtlb88aqS/YntPPZocqLubBNO8SanzuwrtozzL2oY8jWGuPPrK8LvyIAS8mI/hO/spsD4JrAq/DjRKvyfroT9rsuu+TRMovW359r4OUSm/PQ77PieZTz1Oabe74FvRvNYuObxjQLA8/Ph+PI1hrjyLy/C7siAEvGJDuTsBFz7AXN7Rv+Tr3z/d2qk9E9oXPNokqbvNQoI/JWRNPw7Zgz9JqE89gia3u3pv07zcOqq7NGKiPOQMkDymJao8QbVavB0BO7zr3e47lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.68868893 0.3884171 0.05065478]\n [-1.1693598 -1.284492 0.05065478]\n [-0.66139305 0.490343 0.05068317]\n [ 0.80230933 1.0300615 0.0506976 ]]",
34
+ "desired_goal": "[[ 0.01919194 -1.1918684 -1.0941383 ]\n [-0.6605104 -0.71596885 0.27242 ]\n [-0.9794903 0.21593282 0.91534686]\n [-1.6177038 1.6626992 0.6969889 ]]",
35
+ "observation": "[[-2.5829625 -1.7387835 1.9457663 -0.43366587 0.07164396 -0.05611243\n 1.8714098 0.68868893 0.3884171 0.05065478 -0.00513036 -0.02575903\n -0.00777096 0.02001052 0.01646177 0.02128675 -0.00734842 -0.0080645\n 0.00688347]\n [ 0.26861376 1.1496767 -0.76264 0.11972416 0.12193693 0.0454351\n -0.48642507 -1.1693598 -1.284492 0.05065478 -0.00513036 -0.02575903\n -0.00743595 0.02001049 0.01646175 0.02128675 -0.00734842 -0.0080645\n 0.00688357]\n [ 0.3440703 -0.54168755 -0.7898568 1.2649888 -0.4603456 -0.04103403\n -0.48237172 -0.66139305 0.490343 0.05068317 -0.00559727 -0.0255565\n -0.01130267 0.02151508 0.01556229 0.02128675 -0.00734848 -0.00806444\n 0.00565378]\n [-2.970154 -1.6395984 1.7493863 0.08293698 0.0092683 -0.00516186\n 1.0176636 0.80230933 1.0300615 0.0506976 -0.00558931 -0.02580999\n -0.005195 0.01982222 0.01758427 0.02076991 -0.01334888 -0.01141384\n 0.00728964]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcP4eukyXDz0K16M8gnQPvoN9ab0K16M8dp8RPgWM470K16M87pDMPJbHEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZ0m8ve4z5L36MVo+bTntvN64h72jmyA+GzbSO2lOYL0K16M88SPpPPvwTz1Thw8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAcP4eukyXDz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIJ0D76DfWm9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB2nxE+BYzjvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA7pDMPJbHEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.00060651 0.0350564 0.02 ]\n [-0.14009288 -0.05700446 0.02 ]\n [ 0.14220986 -0.11110691 0.02 ]\n [ 0.02497145 -0.14333948 0.02 ]]",
45
+ "desired_goal": "[[-0.09193688 -0.11142717 0.21308127]\n [-0.02895805 -0.06627057 0.1568437 ]\n [ 0.00641514 -0.05476228 0.02 ]\n [ 0.02845952 0.05076693 0.14016466]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.0651358e-04\n 3.5056397e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4009288e-01\n -5.7004463e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4220986e-01\n -1.1110691e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.4971452e-02\n -1.4333948e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CrDYIW56MSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDcApKBd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDpY593KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDjrLZBcBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDrJwS8J2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDx0CaJAMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD/svysjndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD57QC0WudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEA5L7GeddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEFzoMa0hdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEGMotthvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrETQH7gsLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrENr0SRKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEUtVinYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEZT3h4t6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEmP+4smOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEgY0l7dBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEnd9Ujs2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEtBdt2s8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE6BJqZc+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE0RsVLzxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE7SU9pyqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE/tihFmWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFMqEeyRkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFGwDeTFEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFNmViWmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFSFYlpoLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFfFx4ptrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFZdzwMH9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFgTWPLgXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFlIr4FibdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFyE/8l5XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFsH1WbPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFy5pJwsHdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrFzcfms/6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF4SCOFQEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGFRhc7hfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF/gQxvehdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGG1KoQ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGKtfPX05dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGXrBbfP5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGRv1+RYBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGZEadc0MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGdvkBCD3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGqu5SWJKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGlDUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGstOM2m6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGxckt29tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG+eOwPiDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG4lOoHcDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHAK3EyckdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHESUTtb+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHRYNiH6/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHLhN21UmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHTO2JBPbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHXY0uUUxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHkWEkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHem1x82KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHmKhL5ARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHrtb9qDcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH4/TCtRvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHzhMSK3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH7IU8FINdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIG1FhG6PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIU2iL2pRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIQFjVhCudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIZxe1KGtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIk3225QQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIywBHTZydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIt1UVBUrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrI32gWac7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJDa1b7j1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJRrWiDdydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJNd6kZaWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJXzrE9+xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJgaguh9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJtdaUzKtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJnu/DcdpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJvBL5AQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJ0ETg2qDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKBMijcmCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJ7j9GZuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKDNZ/0/XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKId43WFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKVWKl54XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKPcwxnFpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKXJWvKU3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKcrRrrPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKqK4pc5bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKkhIWgvldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKrmAbyYpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKvxyfcvedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK81iONo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK3JtBOYZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK+t+1Bt2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLDcxj8UFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLQk078vVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLK8Z9/jLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLSve54GEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrLTGYrrgPdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13885a95e7ff142a98d18e1123b483d5b6c3b8912cc3f319ccc97e97def20ac9
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:380dfcc58320ab8f5bede3449c9954107fdf9d92392c84f7e03b8a7a73917741
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e4201c60d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4201c57700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698537365392384006, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA600wP5vexj5ie089la2VvzxqpL9ie089DlEpvz0O+z4nmU89JWRNPw7Zgz9JqE89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaDidPCWPmL+5DIy/Nhcpv7xJN7+ieos+4L96v34dXT4sVGo/6xDPv1TT1D/dbTI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABCTyXAdZDev98O+T90Cd6+ErqSPSbWZb1biu8/600wP5vexj5ie089mByou5sE07x/o/67Gu2jPNPahjyNYa48+srwu/IgBLyxjuE7voeJPpsokz9gPEO/8TH1PRK6+T0nGjo9tQz5vpWtlb88aqS/YntPPZocqLubBNO8SanzuwrtozzL2oY8jWGuPPrK8LvyIAS8mI/hO/spsD4JrAq/DjRKvyfroT9rsuu+TRMovW359r4OUSm/PQ77PieZTz1Oabe74FvRvNYuObxjQLA8/Ph+PI1hrjyLy/C7siAEvGJDuTsBFz7AXN7Rv+Tr3z/d2qk9E9oXPNokqbvNQoI/JWRNPw7Zgz9JqE89gia3u3pv07zcOqq7NGKiPOQMkDymJao8QbVavB0BO7zr3e47lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.68868893 0.3884171 0.05065478]\n [-1.1693598 -1.284492 0.05065478]\n [-0.66139305 0.490343 0.05068317]\n [ 0.80230933 1.0300615 0.0506976 ]]", "desired_goal": "[[ 0.01919194 -1.1918684 -1.0941383 ]\n [-0.6605104 -0.71596885 0.27242 ]\n [-0.9794903 0.21593282 0.91534686]\n [-1.6177038 1.6626992 0.6969889 ]]", "observation": "[[-2.5829625 -1.7387835 1.9457663 -0.43366587 0.07164396 -0.05611243\n 1.8714098 0.68868893 0.3884171 0.05065478 -0.00513036 -0.02575903\n -0.00777096 0.02001052 0.01646177 0.02128675 -0.00734842 -0.0080645\n 0.00688347]\n [ 0.26861376 1.1496767 -0.76264 0.11972416 0.12193693 0.0454351\n -0.48642507 -1.1693598 -1.284492 0.05065478 -0.00513036 -0.02575903\n -0.00743595 0.02001049 0.01646175 0.02128675 -0.00734842 -0.0080645\n 0.00688357]\n [ 0.3440703 -0.54168755 -0.7898568 1.2649888 -0.4603456 -0.04103403\n -0.48237172 -0.66139305 0.490343 0.05068317 -0.00559727 -0.0255565\n -0.01130267 0.02151508 0.01556229 0.02128675 -0.00734848 -0.00806444\n 0.00565378]\n [-2.970154 -1.6395984 1.7493863 0.08293698 0.0092683 -0.00516186\n 1.0176636 0.80230933 1.0300615 0.0506976 -0.00558931 -0.02580999\n -0.005195 0.01982222 0.01758427 0.02076991 -0.01334888 -0.01141384\n 0.00728964]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcP4eukyXDz0K16M8gnQPvoN9ab0K16M8dp8RPgWM470K16M87pDMPJbHEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZ0m8ve4z5L36MVo+bTntvN64h72jmyA+GzbSO2lOYL0K16M88SPpPPvwTz1Thw8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAcP4eukyXDz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIJ0D76DfWm9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB2nxE+BYzjvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA7pDMPJbHEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00060651 0.0350564 0.02 ]\n [-0.14009288 -0.05700446 0.02 ]\n [ 0.14220986 -0.11110691 0.02 ]\n [ 0.02497145 -0.14333948 0.02 ]]", "desired_goal": "[[-0.09193688 -0.11142717 0.21308127]\n [-0.02895805 -0.06627057 0.1568437 ]\n [ 0.00641514 -0.05476228 0.02 ]\n [ 0.02845952 0.05076693 0.14016466]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.0651358e-04\n 3.5056397e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4009288e-01\n -5.7004463e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4220986e-01\n -1.1110691e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.4971452e-02\n -1.4333948e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CrDYIW56MSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDcApKBd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDpY593KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDjrLZBcBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDrJwS8J2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDx0CaJAMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD/svysjndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD57QC0WudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEA5L7GeddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEFzoMa0hdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEGMotthvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrETQH7gsLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrENr0SRKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEUtVinYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEZT3h4t6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEmP+4smOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEgY0l7dBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEnd9Ujs2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEtBdt2s8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE6BJqZc+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE0RsVLzxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE7SU9pyqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE/tihFmWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFMqEeyRkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFGwDeTFEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFNmViWmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFSFYlpoLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFfFx4ptrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFZdzwMH9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFgTWPLgXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFlIr4FibdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFyE/8l5XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFsH1WbPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFy5pJwsHdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrFzcfms/6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF4SCOFQEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGFRhc7hfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF/gQxvehdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGG1KoQ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGKtfPX05dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGXrBbfP5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGRv1+RYBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGZEadc0MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGdvkBCD3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGqu5SWJKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGlDUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGstOM2m6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGxckt29tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG+eOwPiDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG4lOoHcDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHAK3EyckdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHESUTtb+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHRYNiH6/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHLhN21UmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHTO2JBPbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHXY0uUUxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHkWEkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHem1x82KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHmKhL5ARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHrtb9qDcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH4/TCtRvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHzhMSK3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH7IU8FINdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIG1FhG6PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIU2iL2pRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIQFjVhCudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIZxe1KGtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIk3225QQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIywBHTZydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIt1UVBUrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrI32gWac7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJDa1b7j1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJRrWiDdydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJNd6kZaWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJXzrE9+xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJgaguh9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJtdaUzKtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJnu/DcdpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJvBL5AQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJ0ETg2qDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKBMijcmCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJ7j9GZuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKDNZ/0/XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKId43WFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKVWKl54XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKPcwxnFpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKXJWvKU3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKcrRrrPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKqK4pc5bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKkhIWgvldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKrmAbyYpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKvxyfcvedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK81iONo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK3JtBOYZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK+t+1Bt2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLDcxj8UFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLQk078vVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLK8Z9/jLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLSve54GEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrLTGYrrgPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (782 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-29T00:54:07.951836"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:641da31de92d1744e061db5848d07fe848dfd8daae6924c8b34423371ab8bca9
3
+ size 3013