update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
model-index:
|
7 |
+
- name: rtmex23-pol4-cardif
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# rtmex23-pol4-cardif
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.6787
|
19 |
+
- F1: 0.8463
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 500
|
45 |
+
- num_epochs: 8
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|
|
51 |
+
| 0.7006 | 1.0 | 17996 | 0.6293 | 0.6758 |
|
52 |
+
| 0.5558 | 2.0 | 35992 | 0.5515 | 0.7590 |
|
53 |
+
| 0.4566 | 3.0 | 53988 | 0.5066 | 0.7939 |
|
54 |
+
| 0.3855 | 4.0 | 71984 | 0.4959 | 0.8217 |
|
55 |
+
| 0.3258 | 5.0 | 89980 | 0.5075 | 0.8200 |
|
56 |
+
| 0.2744 | 6.0 | 107976 | 0.5251 | 0.8409 |
|
57 |
+
| 0.2322 | 7.0 | 125972 | 0.5889 | 0.8461 |
|
58 |
+
| 0.2029 | 8.0 | 143968 | 0.6787 | 0.8463 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.29.1
|
64 |
+
- Pytorch 1.13.1
|
65 |
+
- Datasets 2.12.0
|
66 |
+
- Tokenizers 0.13.3
|