Text-to-Image
Diffusers
lora
stable-diffusion
clementchadebec commited on
Commit
2d4de60
·
verified ·
1 Parent(s): fbe1668

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -3
README.md CHANGED
@@ -8,13 +8,15 @@ tags:
8
  ---
9
  # ⚡ FlashDiffusion: FlashSD ⚡
10
 
11
- <p align="center">
12
- <img style="width:400px;" src="images/hf_grid.png">
13
- </p>
14
 
15
  Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
16
  This model is a 26.4M LoRA distilled version of SD1.5 model. The main purpose of this model is to reproduce the main results of the paper.
17
 
 
 
 
 
 
18
  # How to use?
19
 
20
  The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**.
@@ -47,3 +49,22 @@ image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
47
  <p align="center">
48
  <img style="width:400px;" src="images/raccoon.png">
49
  </p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
  # ⚡ FlashDiffusion: FlashSD ⚡
10
 
 
 
 
11
 
12
  Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
13
  This model is a 26.4M LoRA distilled version of SD1.5 model. The main purpose of this model is to reproduce the main results of the paper.
14
 
15
+
16
+ <p align="center">
17
+ <img style="width:400px;" src="images/hf_grid.png">
18
+ </p>
19
+
20
  # How to use?
21
 
22
  The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**.
 
49
  <p align="center">
50
  <img style="width:400px;" src="images/raccoon.png">
51
  </p>
52
+
53
+ # Training Details
54
+ The model was trained for 20k iterations on 2 H100 GPUs (representing approx. **13 hours** of training).
55
+
56
+ **Metrics on COCO 2017 validation set**
57
+
58
+ - 2 steps:
59
+ - FID-5k: 22.6
60
+ - CLIP Score (ViT-g/14): 0.306
61
+
62
+ - 4 steps:
63
+ - FID-5k: 22.5
64
+ - CLIP Score (ViT-g/14):
65
+
66
+ **Metrics on COCO 2014 validation**
67
+ - 2 steps:
68
+ - FID-30k:
69
+ - 4 steps:
70
+ - FID-30k: