|
from typing import Dict, List, Any |
|
from transformers import AutoProcessor, MarkupLMModel |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.processor = AutoProcessor.from_pretrained("microsoft/markuplm-large") |
|
self.model = MarkupLMModel.from_pretrained("microsoft/markuplm-large") |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
encoding = self.processor(inputs, return_tensors="pt") |
|
output = self.model(**encoding) |
|
return {"last_hidden_state": output.last_hidden_state[0].tolist(), |
|
"pooler_output": output.pooler_output[0].tolist()} |
|
|
|
|