jartine commited on
Commit
f08ae2f
1 Parent(s): d970f62

Add README.md to repo

Browse files
Files changed (1) hide show
  1. README.md +43 -54
README.md CHANGED
@@ -34,40 +34,38 @@ quantized_by: TheBloke
34
  <!-- header start -->
35
  <!-- 200823 -->
36
  <div style="width: auto; margin-left: auto; margin-right: auto">
37
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
38
  </div>
39
  <div style="display: flex; justify-content: space-between; width: 100%;">
40
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
41
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
42
  </div>
43
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
44
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
45
  </div>
46
  </div>
47
- <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
48
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
49
  <!-- header end -->
50
 
51
- # Dolphin 2.5 Mixtral 8X7B - GGUF
52
  - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
53
  - Original model: [Dolphin 2.5 Mixtral 8X7B](https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b)
54
 
55
  <!-- description start -->
56
  ## Description
57
 
58
- This repo contains GGUF format model files for [Eric Hartford's Dolphin 2.5 Mixtral 8X7B](https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b).
59
 
60
- <!-- description end -->
61
- <!-- README_GGUF.md-about-gguf start -->
62
- ### About GGUF
63
 
64
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
65
 
66
- ### Mixtral GGUF
67
 
68
  Support for Mixtral was merged into Llama.cpp on December 13th.
69
 
70
- These Mixtral GGUFs are known to work in:
71
 
72
  * llama.cpp as of December 13th
73
  * KoboldCpp 1.52 as later
@@ -76,12 +74,12 @@ These Mixtral GGUFs are known to work in:
76
 
77
  Other clients/libraries, not listed above, may not yet work.
78
 
79
- <!-- README_GGUF.md-about-gguf end -->
80
  <!-- repositories-available start -->
81
  ## Repositories available
82
 
83
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GPTQ)
84
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF)
85
  * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b)
86
  <!-- repositories-available end -->
87
 
@@ -100,10 +98,10 @@ Other clients/libraries, not listed above, may not yet work.
100
  <!-- prompt-template end -->
101
 
102
 
103
- <!-- compatibility_gguf start -->
104
  ## Compatibility
105
 
106
- These Mixtral GGUFs are compatible with llama.cpp from December 13th onwards. Other clients/libraries may not work yet.
107
 
108
  ## Explanation of quantisation methods
109
 
@@ -120,30 +118,30 @@ The new methods available are:
120
 
121
  Refer to the Provided Files table below to see what files use which methods, and how.
122
  </details>
123
- <!-- compatibility_gguf end -->
124
 
125
- <!-- README_GGUF.md-provided-files start -->
126
  ## Provided files
127
 
128
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
129
  | ---- | ---- | ---- | ---- | ---- | ----- |
130
- | [dolphin-2.5-mixtral-8x7b.Q2_K.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q2_K.gguf) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes |
131
- | [dolphin-2.5-mixtral-8x7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q3_K_M.gguf) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss |
132
- | [dolphin-2.5-mixtral-8x7b.Q4_0.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q4_0.gguf) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
133
- | [dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended |
134
- | [dolphin-2.5-mixtral-8x7b.Q5_0.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q5_0.gguf) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
135
- | [dolphin-2.5-mixtral-8x7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q5_K_M.gguf) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended |
136
- | [dolphin-2.5-mixtral-8x7b.Q6_K.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q6_K.gguf) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss |
137
- | [dolphin-2.5-mixtral-8x7b.Q8_0.gguf](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF/blob/main/dolphin-2.5-mixtral-8x7b.Q8_0.gguf) | Q8_0 | 8 | 49.62 GB| 52.12 GB | very large, extremely low quality loss - not recommended |
138
 
139
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
140
 
141
 
142
 
143
- <!-- README_GGUF.md-provided-files end -->
144
 
145
- <!-- README_GGUF.md-how-to-download start -->
146
- ## How to download GGUF files
147
 
148
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
149
 
@@ -155,7 +153,7 @@ The following clients/libraries will automatically download models for you, prov
155
 
156
  ### In `text-generation-webui`
157
 
158
- Under Download Model, you can enter the model repo: TheBloke/dolphin-2.5-mixtral-8x7b-GGUF and below it, a specific filename to download, such as: dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf.
159
 
160
  Then click Download.
161
 
@@ -170,7 +168,7 @@ pip3 install huggingface-hub
170
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
171
 
172
  ```shell
173
- huggingface-cli download TheBloke/dolphin-2.5-mixtral-8x7b-GGUF dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
174
  ```
175
 
176
  <details>
@@ -179,7 +177,7 @@ huggingface-cli download TheBloke/dolphin-2.5-mixtral-8x7b-GGUF dolphin-2.5-mixt
179
  You can also download multiple files at once with a pattern:
180
 
181
  ```shell
182
- huggingface-cli download TheBloke/dolphin-2.5-mixtral-8x7b-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
183
  ```
184
 
185
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
@@ -193,25 +191,25 @@ pip3 install hf_transfer
193
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
194
 
195
  ```shell
196
- HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/dolphin-2.5-mixtral-8x7b-GGUF dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
197
  ```
198
 
199
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
200
  </details>
201
- <!-- README_GGUF.md-how-to-download end -->
202
 
203
- <!-- README_GGUF.md-how-to-run start -->
204
  ## Example `llama.cpp` command
205
 
206
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
207
 
208
  ```shell
209
- ./main -ngl 35 -m dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
210
  ```
211
 
212
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
213
 
214
- Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
215
 
216
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
217
 
@@ -219,13 +217,13 @@ For other parameters and how to use them, please refer to [the llama.cpp documen
219
 
220
  ## How to run in `text-generation-webui`
221
 
222
- Note that text-generation-webui may not yet be compatible with Mixtral GGUFs. Please check compatibility first.
223
 
224
  Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
225
 
226
  ## How to run from Python code
227
 
228
- You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) version 0.2.23 and later.
229
 
230
  ### How to load this model in Python code, using llama-cpp-python
231
 
@@ -261,7 +259,7 @@ from llama_cpp import Llama
261
 
262
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
263
  llm = Llama(
264
- model_path="./dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf", # Download the model file first
265
  n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
266
  n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
267
  n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
@@ -277,7 +275,7 @@ output = llm(
277
 
278
  # Chat Completion API
279
 
280
- llm = Llama(model_path="./dolphin-2.5-mixtral-8x7b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
281
  llm.create_chat_completion(
282
  messages = [
283
  {"role": "system", "content": "You are a story writing assistant."},
@@ -295,7 +293,7 @@ Here are guides on using llama-cpp-python and ctransformers with LangChain:
295
 
296
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
297
 
298
- <!-- README_GGUF.md-how-to-run end -->
299
 
300
  <!-- footer start -->
301
  <!-- 200823 -->
@@ -303,31 +301,23 @@ Here are guides on using llama-cpp-python and ctransformers with LangChain:
303
 
304
  For further support, and discussions on these models and AI in general, join us at:
305
 
306
- [TheBloke AI's Discord server](https://discord.gg/theblokeai)
307
 
308
  ## Thanks, and how to contribute
309
 
310
- Thanks to the [chirper.ai](https://chirper.ai) team!
311
 
312
- Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
313
 
314
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
315
 
316
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
317
 
318
- Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
319
 
320
- * Patreon: https://patreon.com/TheBlokeAI
321
- * Ko-Fi: https://ko-fi.com/TheBlokeAI
322
 
323
- **Special thanks to**: Aemon Algiz.
324
 
325
- **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
326
 
327
 
328
- Thank you to all my generous patrons and donaters!
329
 
330
- And thank you again to a16z for their generous grant.
331
 
332
  <!-- footer end -->
333
 
@@ -402,7 +392,6 @@ Dolphin 3.0 dataset is in progress, and will include:
402
  - enhanced Agent cases like Autogen, Memgpt, Functions
403
  - enhanced role-playing
404
 
405
- [If you would like to financially support my efforts](https://ko-fi.com/erichartford)
406
 
407
  [swag](https://fa7113.myshopify.com/)
408
 
 
34
  <!-- header start -->
35
  <!-- 200823 -->
36
  <div style="width: auto; margin-left: auto; margin-right: auto">
 
37
  </div>
38
  <div style="display: flex; justify-content: space-between; width: 100%;">
39
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/FwAVVu7eJ4">Chat & support: jartine's Discord server</a></p>
41
  </div>
42
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
 
43
  </div>
44
  </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">jartine's LLM work is generously supported by a grant from <a href="https://mozilla.org">mozilla</a></p></div>
46
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
  <!-- header end -->
48
 
49
+ # Dolphin 2.5 Mixtral 8X7B - llamafile
50
  - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
51
  - Original model: [Dolphin 2.5 Mixtral 8X7B](https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b)
52
 
53
  <!-- description start -->
54
  ## Description
55
 
56
+ This repo contains llamafile format model files for [Eric Hartford's Dolphin 2.5 Mixtral 8X7B](https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b).
57
 
58
+ WARNING: This README may contain inaccuracies. It was generated automatically by forking <a href=/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF>TheBloke/dolphin-2.5-mixtral-8x7b-GGUF</a> and piping the README through sed. Errors should be reported to jartine, and do not reflect TheBloke. You can also support his work on [Patreon](https://www.patreon.com/TheBlokeAI).
59
+ <!-- README_llamafile.md-about-llamafile start -->
60
+ ### About llamafile
61
 
62
+ llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64.
63
 
64
+ ### Mixtral llamafile
65
 
66
  Support for Mixtral was merged into Llama.cpp on December 13th.
67
 
68
+ These Mixtral llamafiles are known to work in:
69
 
70
  * llama.cpp as of December 13th
71
  * KoboldCpp 1.52 as later
 
74
 
75
  Other clients/libraries, not listed above, may not yet work.
76
 
77
+ <!-- README_llamafile.md-about-llamafile end -->
78
  <!-- repositories-available start -->
79
  ## Repositories available
80
 
81
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-GPTQ)
82
+ * [2, 3, 4, 5, 6 and 8-bit llamafile models for CPU+GPU inference](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile)
83
  * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b)
84
  <!-- repositories-available end -->
85
 
 
98
  <!-- prompt-template end -->
99
 
100
 
101
+ <!-- compatibility_llamafile start -->
102
  ## Compatibility
103
 
104
+ These Mixtral llamafiles are compatible with llama.cpp from December 13th onwards. Other clients/libraries may not work yet.
105
 
106
  ## Explanation of quantisation methods
107
 
 
118
 
119
  Refer to the Provided Files table below to see what files use which methods, and how.
120
  </details>
121
+ <!-- compatibility_llamafile end -->
122
 
123
+ <!-- README_llamafile.md-provided-files start -->
124
  ## Provided files
125
 
126
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
127
  | ---- | ---- | ---- | ---- | ---- | ----- |
128
+ | [dolphin-2.5-mixtral-8x7b.Q2_K.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q2_K.llamafile) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes |
129
+ | [dolphin-2.5-mixtral-8x7b.Q3_K_M.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q3_K_M.llamafile) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss |
130
+ | [dolphin-2.5-mixtral-8x7b.Q4_0.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q4_0.llamafile) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
131
+ | [dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended |
132
+ | [dolphin-2.5-mixtral-8x7b.Q5_0.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q5_0.llamafile) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
133
+ | [dolphin-2.5-mixtral-8x7b.Q5_K_M.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q5_K_M.llamafile) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended |
134
+ | [dolphin-2.5-mixtral-8x7b.Q6_K.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q6_K.llamafile) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss |
135
+ | [dolphin-2.5-mixtral-8x7b.Q8_0.llamafile](https://huggingface.co/jartine/dolphin-2.5-mixtral-8x7b-llamafile/blob/main/dolphin-2.5-mixtral-8x7b.Q8_0.llamafile) | Q8_0 | 8 | 49.62 GB| 52.12 GB | very large, extremely low quality loss - not recommended |
136
 
137
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
138
 
139
 
140
 
141
+ <!-- README_llamafile.md-provided-files end -->
142
 
143
+ <!-- README_llamafile.md-how-to-download start -->
144
+ ## How to download llamafile files
145
 
146
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
147
 
 
153
 
154
  ### In `text-generation-webui`
155
 
156
+ Under Download Model, you can enter the model repo: jartine/dolphin-2.5-mixtral-8x7b-llamafile and below it, a specific filename to download, such as: dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile.
157
 
158
  Then click Download.
159
 
 
168
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
169
 
170
  ```shell
171
+ huggingface-cli download jartine/dolphin-2.5-mixtral-8x7b-llamafile dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
172
  ```
173
 
174
  <details>
 
177
  You can also download multiple files at once with a pattern:
178
 
179
  ```shell
180
+ huggingface-cli download jartine/dolphin-2.5-mixtral-8x7b-llamafile --local-dir . --local-dir-use-symlinks False --include='*Q4_K*llamafile'
181
  ```
182
 
183
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
 
191
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
192
 
193
  ```shell
194
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download jartine/dolphin-2.5-mixtral-8x7b-llamafile dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
195
  ```
196
 
197
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
198
  </details>
199
+ <!-- README_llamafile.md-how-to-download end -->
200
 
201
+ <!-- README_llamafile.md-how-to-run start -->
202
  ## Example `llama.cpp` command
203
 
204
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
205
 
206
  ```shell
207
+ ./main -ngl 35 -m dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
208
  ```
209
 
210
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
211
 
212
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the llamafile file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
213
 
214
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
215
 
 
217
 
218
  ## How to run in `text-generation-webui`
219
 
220
+ Note that text-generation-webui may not yet be compatible with Mixtral llamafiles. Please check compatibility first.
221
 
222
  Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
223
 
224
  ## How to run from Python code
225
 
226
+ You can use llamafile models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) version 0.2.23 and later.
227
 
228
  ### How to load this model in Python code, using llama-cpp-python
229
 
 
259
 
260
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
261
  llm = Llama(
262
+ model_path="./dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile", # Download the model file first
263
  n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
264
  n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
265
  n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
 
275
 
276
  # Chat Completion API
277
 
278
+ llm = Llama(model_path="./dolphin-2.5-mixtral-8x7b.Q4_K_M.llamafile", chat_format="llama-2") # Set chat_format according to the model you are using
279
  llm.create_chat_completion(
280
  messages = [
281
  {"role": "system", "content": "You are a story writing assistant."},
 
293
 
294
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
295
 
296
+ <!-- README_llamafile.md-how-to-run end -->
297
 
298
  <!-- footer start -->
299
  <!-- 200823 -->
 
301
 
302
  For further support, and discussions on these models and AI in general, join us at:
303
 
304
+ [jartine AI's Discord server](https://discord.gg/FwAVVu7eJ4)
305
 
306
  ## Thanks, and how to contribute
307
 
 
308
 
 
309
 
310
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
311
 
312
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
313
 
 
314
 
 
 
315
 
 
316
 
 
317
 
318
 
 
319
 
320
+ And thank you again to mozilla for their generous grant.
321
 
322
  <!-- footer end -->
323
 
 
392
  - enhanced Agent cases like Autogen, Memgpt, Functions
393
  - enhanced role-playing
394
 
 
395
 
396
  [swag](https://fa7113.myshopify.com/)
397