jarredparrett commited on
Commit
541e304
1 Parent(s): 8470706

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:17500
24
+ - loss:ContrastiveLoss
25
+ widget:
26
+ - source_sentence: 1 Scenic Unit 110
27
+ sentences:
28
+ - 1 Scenic Unit 110
29
+ - 46 Drew Rear 21
30
+ - '110 Nightin - Gale #10'
31
+ - source_sentence: 131 Sayre Fl 1
32
+ sentences:
33
+ - 715 Union Unit Q
34
+ - 1 Rustic Apt D26
35
+ - 131 Sayre Apt 1
36
+ - source_sentence: '731 Eaton # 1'
37
+ sentences:
38
+ - '1100 Wesley #1'
39
+ - '731 Eaton #1'
40
+ - 815 Murray Flr 2
41
+ - source_sentence: 18 - 01 Pollitt Ste 4
42
+ sentences:
43
+ - 186 1st Apt 1
44
+ - '63 Mountain # A'
45
+ - 18 - 01 Pollitt Ste 4
46
+ - source_sentence: '612 Madison # 2'
47
+ sentences:
48
+ - '421 Jersey # 1'
49
+ - 8502 Liberty Fl 2
50
+ - 612 Madison Apt 2
51
+ model-index:
52
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: test
59
+ type: test
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.6004811664372558
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.4540997609838606
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.4981741659289101
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.45189578750840304
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.4972646329389563
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.45172321150833644
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.6004811664029517
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.45184703338997106
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.6004811664372558
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.4540997609838606
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: validation
96
+ type: validation
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.9428978189133087
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.6568158263615053
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.9703142955814245
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.6535524581165605
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.9704178537982603
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.6535890675794356
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.9428978176196957
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.6535945302568601
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.9704178537982603
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.6568158263615053
127
+ name: Spearman Max
128
+ ---
129
+
130
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
131
+
132
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
133
+
134
+ ## Model Details
135
+
136
+ ### Model Description
137
+ - **Model Type:** Sentence Transformer
138
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
139
+ - **Maximum Sequence Length:** 256 tokens
140
+ - **Output Dimensionality:** 384 tokens
141
+ - **Similarity Function:** Cosine Similarity
142
+ <!-- - **Training Dataset:** Unknown -->
143
+ <!-- - **Language:** Unknown -->
144
+ <!-- - **License:** Unknown -->
145
+
146
+ ### Model Sources
147
+
148
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
149
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
150
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
151
+
152
+ ### Full Model Architecture
153
+
154
+ ```
155
+ SentenceTransformer(
156
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
157
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
158
+ (2): Normalize()
159
+ )
160
+ ```
161
+
162
+ ## Usage
163
+
164
+ ### Direct Usage (Sentence Transformers)
165
+
166
+ First install the Sentence Transformers library:
167
+
168
+ ```bash
169
+ pip install -U sentence-transformers
170
+ ```
171
+
172
+ Then you can load this model and run inference.
173
+ ```python
174
+ from sentence_transformers import SentenceTransformer
175
+
176
+ # Download from the 🤗 Hub
177
+ model = SentenceTransformer("jarredparrett/fine-tuned-address-model-v0")
178
+ # Run inference
179
+ sentences = [
180
+ '612 Madison # 2',
181
+ '612 Madison Apt 2',
182
+ '421 Jersey # 1',
183
+ ]
184
+ embeddings = model.encode(sentences)
185
+ print(embeddings.shape)
186
+ # [3, 384]
187
+
188
+ # Get the similarity scores for the embeddings
189
+ similarities = model.similarity(embeddings, embeddings)
190
+ print(similarities.shape)
191
+ # [3, 3]
192
+ ```
193
+
194
+ <!--
195
+ ### Direct Usage (Transformers)
196
+
197
+ <details><summary>Click to see the direct usage in Transformers</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Downstream Usage (Sentence Transformers)
204
+
205
+ You can finetune this model on your own dataset.
206
+
207
+ <details><summary>Click to expand</summary>
208
+
209
+ </details>
210
+ -->
211
+
212
+ <!--
213
+ ### Out-of-Scope Use
214
+
215
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
216
+ -->
217
+
218
+ ## Evaluation
219
+
220
+ ### Metrics
221
+
222
+ #### Semantic Similarity
223
+ * Dataset: `test`
224
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
225
+
226
+ | Metric | Value |
227
+ |:-------------------|:-----------|
228
+ | pearson_cosine | 0.6005 |
229
+ | spearman_cosine | 0.4541 |
230
+ | pearson_manhattan | 0.4982 |
231
+ | spearman_manhattan | 0.4519 |
232
+ | pearson_euclidean | 0.4973 |
233
+ | spearman_euclidean | 0.4517 |
234
+ | pearson_dot | 0.6005 |
235
+ | spearman_dot | 0.4518 |
236
+ | pearson_max | 0.6005 |
237
+ | **spearman_max** | **0.4541** |
238
+
239
+ #### Semantic Similarity
240
+ * Dataset: `validation`
241
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
242
+
243
+ | Metric | Value |
244
+ |:-------------------|:-----------|
245
+ | pearson_cosine | 0.9429 |
246
+ | spearman_cosine | 0.6568 |
247
+ | pearson_manhattan | 0.9703 |
248
+ | spearman_manhattan | 0.6536 |
249
+ | pearson_euclidean | 0.9704 |
250
+ | spearman_euclidean | 0.6536 |
251
+ | pearson_dot | 0.9429 |
252
+ | spearman_dot | 0.6536 |
253
+ | pearson_max | 0.9704 |
254
+ | **spearman_max** | **0.6568** |
255
+
256
+ <!--
257
+ ## Bias, Risks and Limitations
258
+
259
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
260
+ -->
261
+
262
+ <!--
263
+ ### Recommendations
264
+
265
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
266
+ -->
267
+
268
+ ## Training Details
269
+
270
+ ### Training Dataset
271
+
272
+ #### Unnamed Dataset
273
+
274
+
275
+ * Size: 17,500 training samples
276
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
277
+ * Approximate statistics based on the first 1000 samples:
278
+ | | sentence_0 | sentence_1 | label |
279
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
280
+ | type | string | string | int |
281
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.0 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.01 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>0: ~18.70%</li><li>1: ~81.30%</li></ul> |
282
+ * Samples:
283
+ | sentence_0 | sentence_1 | label |
284
+ |:------------------------------------------------------|:------------------------------------------------------|:---------------|
285
+ | <code>32 Cinder #17</code> | <code>32 Cinder Unit 17</code> | <code>1</code> |
286
+ | <code>85 Allen Apt 2R</code> | <code>85 Allen #2R</code> | <code>1</code> |
287
+ | <code>138 - 162 Martin Luther King Jr Apt 1807</code> | <code>138 - 162 Martin Luther King Jr Apt 1807</code> | <code>1</code> |
288
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
289
+ ```json
290
+ {
291
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
292
+ "margin": 0.5,
293
+ "size_average": true
294
+ }
295
+ ```
296
+
297
+ ### Training Hyperparameters
298
+ #### Non-Default Hyperparameters
299
+
300
+ - `eval_strategy`: steps
301
+ - `per_device_train_batch_size`: 16
302
+ - `per_device_eval_batch_size`: 16
303
+ - `num_train_epochs`: 4
304
+ - `multi_dataset_batch_sampler`: round_robin
305
+
306
+ #### All Hyperparameters
307
+ <details><summary>Click to expand</summary>
308
+
309
+ - `overwrite_output_dir`: False
310
+ - `do_predict`: False
311
+ - `eval_strategy`: steps
312
+ - `prediction_loss_only`: True
313
+ - `per_device_train_batch_size`: 16
314
+ - `per_device_eval_batch_size`: 16
315
+ - `per_gpu_train_batch_size`: None
316
+ - `per_gpu_eval_batch_size`: None
317
+ - `gradient_accumulation_steps`: 1
318
+ - `eval_accumulation_steps`: None
319
+ - `torch_empty_cache_steps`: None
320
+ - `learning_rate`: 5e-05
321
+ - `weight_decay`: 0.0
322
+ - `adam_beta1`: 0.9
323
+ - `adam_beta2`: 0.999
324
+ - `adam_epsilon`: 1e-08
325
+ - `max_grad_norm`: 1
326
+ - `num_train_epochs`: 4
327
+ - `max_steps`: -1
328
+ - `lr_scheduler_type`: linear
329
+ - `lr_scheduler_kwargs`: {}
330
+ - `warmup_ratio`: 0.0
331
+ - `warmup_steps`: 0
332
+ - `log_level`: passive
333
+ - `log_level_replica`: warning
334
+ - `log_on_each_node`: True
335
+ - `logging_nan_inf_filter`: True
336
+ - `save_safetensors`: True
337
+ - `save_on_each_node`: False
338
+ - `save_only_model`: False
339
+ - `restore_callback_states_from_checkpoint`: False
340
+ - `no_cuda`: False
341
+ - `use_cpu`: False
342
+ - `use_mps_device`: False
343
+ - `seed`: 42
344
+ - `data_seed`: None
345
+ - `jit_mode_eval`: False
346
+ - `use_ipex`: False
347
+ - `bf16`: False
348
+ - `fp16`: False
349
+ - `fp16_opt_level`: O1
350
+ - `half_precision_backend`: auto
351
+ - `bf16_full_eval`: False
352
+ - `fp16_full_eval`: False
353
+ - `tf32`: None
354
+ - `local_rank`: 0
355
+ - `ddp_backend`: None
356
+ - `tpu_num_cores`: None
357
+ - `tpu_metrics_debug`: False
358
+ - `debug`: []
359
+ - `dataloader_drop_last`: False
360
+ - `dataloader_num_workers`: 0
361
+ - `dataloader_prefetch_factor`: None
362
+ - `past_index`: -1
363
+ - `disable_tqdm`: False
364
+ - `remove_unused_columns`: True
365
+ - `label_names`: None
366
+ - `load_best_model_at_end`: False
367
+ - `ignore_data_skip`: False
368
+ - `fsdp`: []
369
+ - `fsdp_min_num_params`: 0
370
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
371
+ - `fsdp_transformer_layer_cls_to_wrap`: None
372
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
373
+ - `deepspeed`: None
374
+ - `label_smoothing_factor`: 0.0
375
+ - `optim`: adamw_torch
376
+ - `optim_args`: None
377
+ - `adafactor`: False
378
+ - `group_by_length`: False
379
+ - `length_column_name`: length
380
+ - `ddp_find_unused_parameters`: None
381
+ - `ddp_bucket_cap_mb`: None
382
+ - `ddp_broadcast_buffers`: False
383
+ - `dataloader_pin_memory`: True
384
+ - `dataloader_persistent_workers`: False
385
+ - `skip_memory_metrics`: True
386
+ - `use_legacy_prediction_loop`: False
387
+ - `push_to_hub`: False
388
+ - `resume_from_checkpoint`: None
389
+ - `hub_model_id`: None
390
+ - `hub_strategy`: every_save
391
+ - `hub_private_repo`: False
392
+ - `hub_always_push`: False
393
+ - `gradient_checkpointing`: False
394
+ - `gradient_checkpointing_kwargs`: None
395
+ - `include_inputs_for_metrics`: False
396
+ - `eval_do_concat_batches`: True
397
+ - `fp16_backend`: auto
398
+ - `push_to_hub_model_id`: None
399
+ - `push_to_hub_organization`: None
400
+ - `mp_parameters`:
401
+ - `auto_find_batch_size`: False
402
+ - `full_determinism`: False
403
+ - `torchdynamo`: None
404
+ - `ray_scope`: last
405
+ - `ddp_timeout`: 1800
406
+ - `torch_compile`: False
407
+ - `torch_compile_backend`: None
408
+ - `torch_compile_mode`: None
409
+ - `dispatch_batches`: None
410
+ - `split_batches`: None
411
+ - `include_tokens_per_second`: False
412
+ - `include_num_input_tokens_seen`: False
413
+ - `neftune_noise_alpha`: None
414
+ - `optim_target_modules`: None
415
+ - `batch_eval_metrics`: False
416
+ - `eval_on_start`: False
417
+ - `eval_use_gather_object`: False
418
+ - `batch_sampler`: batch_sampler
419
+ - `multi_dataset_batch_sampler`: round_robin
420
+
421
+ </details>
422
+
423
+ ### Training Logs
424
+ | Epoch | Step | Training Loss | test_spearman_max | validation_spearman_max |
425
+ |:------:|:----:|:-------------:|:-----------------:|:-----------------------:|
426
+ | 0 | 0 | - | 0.4541 | - |
427
+ | 0.0914 | 100 | - | - | 0.6494 |
428
+ | 0.1828 | 200 | - | - | 0.6567 |
429
+ | 0.2742 | 300 | - | - | 0.6566 |
430
+ | 0.3656 | 400 | - | - | 0.6568 |
431
+ | 0.4570 | 500 | 0.0056 | - | 0.6568 |
432
+ | 0.5484 | 600 | - | - | 0.6568 |
433
+ | 0.6399 | 700 | - | - | 0.6566 |
434
+ | 0.7313 | 800 | - | - | 0.6568 |
435
+ | 0.8227 | 900 | - | - | 0.6568 |
436
+ | 0.9141 | 1000 | 0.0026 | - | 0.6570 |
437
+ | 1.0 | 1094 | - | - | 0.6568 |
438
+ | 1.0055 | 1100 | - | - | 0.6568 |
439
+ | 1.0969 | 1200 | - | - | 0.6568 |
440
+ | 1.1883 | 1300 | - | - | 0.6569 |
441
+ | 1.2797 | 1400 | - | - | 0.6569 |
442
+ | 1.3711 | 1500 | 0.0021 | - | 0.6569 |
443
+ | 1.4625 | 1600 | - | - | 0.6570 |
444
+ | 1.5539 | 1700 | - | - | 0.6570 |
445
+ | 1.6453 | 1800 | - | - | 0.6568 |
446
+ | 1.7367 | 1900 | - | - | 0.6567 |
447
+ | 1.8282 | 2000 | 0.0018 | - | 0.6569 |
448
+ | 1.9196 | 2100 | - | - | 0.6571 |
449
+ | 2.0 | 2188 | - | - | 0.6571 |
450
+ | 2.0110 | 2200 | - | - | 0.6570 |
451
+ | 2.1024 | 2300 | - | - | 0.6568 |
452
+ | 2.1938 | 2400 | - | - | 0.6569 |
453
+ | 2.2852 | 2500 | 0.0016 | - | 0.6570 |
454
+ | 2.3766 | 2600 | - | - | 0.6569 |
455
+ | 2.4680 | 2700 | - | - | 0.6570 |
456
+ | 2.5594 | 2800 | - | - | 0.6568 |
457
+ | 2.6508 | 2900 | - | - | 0.6569 |
458
+ | 2.7422 | 3000 | 0.0014 | - | 0.6568 |
459
+ | 2.8336 | 3100 | - | - | 0.6569 |
460
+ | 2.9250 | 3200 | - | - | 0.6569 |
461
+ | 3.0 | 3282 | - | - | 0.6569 |
462
+ | 3.0165 | 3300 | - | - | 0.6569 |
463
+ | 3.1079 | 3400 | - | - | 0.6568 |
464
+ | 3.1993 | 3500 | 0.0014 | - | 0.6568 |
465
+ | 3.2907 | 3600 | - | - | 0.6569 |
466
+ | 3.3821 | 3700 | - | - | 0.6569 |
467
+ | 3.4735 | 3800 | - | - | 0.6568 |
468
+ | 3.5649 | 3900 | - | - | 0.6568 |
469
+ | 3.6563 | 4000 | 0.0013 | - | 0.6568 |
470
+ | 3.7477 | 4100 | - | - | 0.6568 |
471
+ | 3.8391 | 4200 | - | - | 0.6568 |
472
+ | 3.9305 | 4300 | - | - | 0.6568 |
473
+ | 4.0 | 4376 | - | - | 0.6568 |
474
+
475
+
476
+ ### Framework Versions
477
+ - Python: 3.10.12
478
+ - Sentence Transformers: 3.0.1
479
+ - Transformers: 4.44.2
480
+ - PyTorch: 2.4.0+cu121
481
+ - Accelerate: 0.33.0
482
+ - Datasets: 2.21.0
483
+ - Tokenizers: 0.19.1
484
+
485
+ ## Citation
486
+
487
+ ### BibTeX
488
+
489
+ #### Sentence Transformers
490
+ ```bibtex
491
+ @inproceedings{reimers-2019-sentence-bert,
492
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
493
+ author = "Reimers, Nils and Gurevych, Iryna",
494
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
495
+ month = "11",
496
+ year = "2019",
497
+ publisher = "Association for Computational Linguistics",
498
+ url = "https://arxiv.org/abs/1908.10084",
499
+ }
500
+ ```
501
+
502
+ #### ContrastiveLoss
503
+ ```bibtex
504
+ @inproceedings{hadsell2006dimensionality,
505
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
506
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
507
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
508
+ year={2006},
509
+ volume={2},
510
+ number={},
511
+ pages={1735-1742},
512
+ doi={10.1109/CVPR.2006.100}
513
+ }
514
+ ```
515
+
516
+ <!--
517
+ ## Glossary
518
+
519
+ *Clearly define terms in order to be accessible across audiences.*
520
+ -->
521
+
522
+ <!--
523
+ ## Model Card Authors
524
+
525
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
526
+ -->
527
+
528
+ <!--
529
+ ## Model Card Contact
530
+
531
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
532
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:616f36bc35680f3561fdadc0880c65fc5d0a8fdd7583c22baa1bc808c046c33d
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff