janmariakowalski commited on
Commit
ddededf
1 Parent(s): 9697027

Push model using huggingface_hub.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": true,
4
  "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 1024,
3
  "pooling_mode_cls_token": true,
4
  "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: BAAI/bge-small-en-v1.5
3
  library_name: setfit
4
  metrics:
5
  - accuracy
@@ -18,7 +18,7 @@ widget:
18
  - text: Konstrukcja łóżka piętrowego jest wadliwa, elementy nie pasują do siebie.
19
  inference: true
20
  model-index:
21
- - name: SetFit with BAAI/bge-small-en-v1.5
22
  results:
23
  - task:
24
  type: text-classification
@@ -29,13 +29,13 @@ model-index:
29
  split: test
30
  metrics:
31
  - type: accuracy
32
- value: 0.7606837606837606
33
  name: Accuracy
34
  ---
35
 
36
- # SetFit with BAAI/bge-small-en-v1.5
37
 
38
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
 
40
  The model has been trained using an efficient few-shot learning technique that involves:
41
 
@@ -46,9 +46,9 @@ The model has been trained using an efficient few-shot learning technique that i
46
 
47
  ### Model Description
48
  - **Model Type:** SetFit
49
- - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
50
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
- - **Maximum Sequence Length:** 512 tokens
52
  - **Number of Classes:** 4 classes
53
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
  <!-- - **Language:** Unknown -->
@@ -61,19 +61,19 @@ The model has been trained using an efficient few-shot learning technique that i
61
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
 
63
  ### Model Labels
64
- | Label | Examples |
65
- |:---------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
- | uszkodzenia | <ul><li>'Drzwiczki szafki na buty Shoe uszkodzone.'</li><li>'Elementy zestawu mebli ogrodowych Relax zardzewiałe.'</li><li>'Śruby w stoliku kawowym Loft obluzowane.'</li></ul> |
67
- | błędny montaż | <ul><li>'Szuflady komody wąskiej zamontowane krzywo i się zacinają.'</li><li>'Drążek na ubrania w szafie jest źle zamontowany i może się wypaść.'</li><li>'Prowadnice szafy przesuwnej źle zamontowane, przez co drzwi nie przesuwają się płynnie.'</li></ul> |
68
- | wady fabryczne | <ul><li>'Brakuje elementów w komodzie Wygodny.'</li><li>'Brakuje drzwiczek w szafie Współczesny.'</li><li>'Tapicerka krzesła jest rozdarcia.'</li></ul> |
69
- | niezgodność towaru z zamówieniem | <ul><li>'Kolor stołu dębowego Olbrzym jest inny niż ten, który został zamówiony.'</li><li>'Kolor fotela skórzanego Leather jest inny niż ten, który został zamówiony.'</li><li>'Wysokość biurka białego White jest niższa niż ta, która była w zamówieniu.'</li></ul> |
70
 
71
  ## Evaluation
72
 
73
  ### Metrics
74
  | Label | Accuracy |
75
  |:--------|:---------|
76
- | **all** | 0.7607 |
77
 
78
  ## Uses
79
 
@@ -123,16 +123,16 @@ preds = model("Półki regału Biblioteka są zbyt wąskie.")
123
  ## Training Details
124
 
125
  ### Training Set Metrics
126
- | Training set | Min | Median | Max |
127
- |:-------------|:----|:--------|:----|
128
- | Word count | 4 | 10.1875 | 39 |
129
 
130
  | Label | Training Sample Count |
131
  |:---------------------------------|:----------------------|
132
- | uszkodzenia | 24 |
133
- | wady fabryczne | 24 |
134
- | niezgodność towaru z zamówieniem | 24 |
135
- | błędny montaż | 24 |
136
 
137
  ### Training Hyperparameters
138
  - batch_size: (32, 32)
@@ -155,230 +155,9 @@ preds = model("Półki regału Biblioteka są zbyt wąskie.")
155
  ### Training Results
156
  | Epoch | Step | Training Loss | Validation Loss |
157
  |:------:|:----:|:-------------:|:---------------:|
158
- | 0.0104 | 1 | 0.1965 | - |
159
- | 0.1042 | 10 | 0.2713 | - |
160
- | 0.2083 | 20 | 0.2394 | - |
161
- | 0.3125 | 30 | 0.2249 | - |
162
- | 0.4167 | 40 | 0.2265 | - |
163
- | 0.5208 | 50 | 0.2153 | - |
164
- | 0.625 | 60 | 0.2043 | - |
165
- | 0.7292 | 70 | 0.2033 | - |
166
- | 0.8333 | 80 | 0.204 | - |
167
- | 0.9375 | 90 | 0.1648 | - |
168
- | 1.0417 | 100 | 0.1452 | - |
169
- | 1.1458 | 110 | 0.1219 | - |
170
- | 1.25 | 120 | 0.1062 | - |
171
- | 1.3542 | 130 | 0.0921 | - |
172
- | 1.4583 | 140 | 0.0803 | - |
173
- | 1.5625 | 150 | 0.0559 | - |
174
- | 1.6667 | 160 | 0.0339 | - |
175
- | 1.7708 | 170 | 0.0258 | - |
176
- | 1.875 | 180 | 0.0153 | - |
177
- | 1.9792 | 190 | 0.0095 | - |
178
- | 2.0833 | 200 | 0.0074 | - |
179
- | 2.1875 | 210 | 0.0076 | - |
180
- | 2.2917 | 220 | 0.0058 | - |
181
- | 2.3958 | 230 | 0.005 | - |
182
- | 2.5 | 240 | 0.0047 | - |
183
- | 2.6042 | 250 | 0.0043 | - |
184
- | 2.7083 | 260 | 0.0041 | - |
185
- | 2.8125 | 270 | 0.0038 | - |
186
- | 2.9167 | 280 | 0.0035 | - |
187
- | 3.0208 | 290 | 0.0034 | - |
188
- | 3.125 | 300 | 0.0033 | - |
189
- | 3.2292 | 310 | 0.0035 | - |
190
- | 3.3333 | 320 | 0.0028 | - |
191
- | 3.4375 | 330 | 0.0031 | - |
192
- | 3.5417 | 340 | 0.0028 | - |
193
- | 3.6458 | 350 | 0.0027 | - |
194
- | 3.75 | 360 | 0.0025 | - |
195
- | 3.8542 | 370 | 0.0025 | - |
196
- | 3.9583 | 380 | 0.0024 | - |
197
- | 4.0625 | 390 | 0.0023 | - |
198
- | 4.1667 | 400 | 0.0023 | - |
199
- | 4.2708 | 410 | 0.0022 | - |
200
- | 4.375 | 420 | 0.0021 | - |
201
- | 4.4792 | 430 | 0.0022 | - |
202
- | 4.5833 | 440 | 0.002 | - |
203
- | 4.6875 | 450 | 0.0022 | - |
204
- | 4.7917 | 460 | 0.0019 | - |
205
- | 4.8958 | 470 | 0.0021 | - |
206
- | 5.0 | 480 | 0.0018 | - |
207
- | 5.1042 | 490 | 0.002 | - |
208
- | 5.2083 | 500 | 0.002 | - |
209
- | 5.3125 | 510 | 0.0017 | - |
210
- | 5.4167 | 520 | 0.002 | - |
211
- | 5.5208 | 530 | 0.0017 | - |
212
- | 5.625 | 540 | 0.0018 | - |
213
- | 5.7292 | 550 | 0.0016 | - |
214
- | 5.8333 | 560 | 0.0016 | - |
215
- | 5.9375 | 570 | 0.0015 | - |
216
- | 6.0417 | 580 | 0.0014 | - |
217
- | 6.1458 | 590 | 0.0017 | - |
218
- | 6.25 | 600 | 0.0016 | - |
219
- | 6.3542 | 610 | 0.0017 | - |
220
- | 6.4583 | 620 | 0.0016 | - |
221
- | 6.5625 | 630 | 0.0017 | - |
222
- | 6.6667 | 640 | 0.0014 | - |
223
- | 6.7708 | 650 | 0.0014 | - |
224
- | 6.875 | 660 | 0.0016 | - |
225
- | 6.9792 | 670 | 0.0015 | - |
226
- | 7.0833 | 680 | 0.0015 | - |
227
- | 7.1875 | 690 | 0.0014 | - |
228
- | 7.2917 | 700 | 0.0015 | - |
229
- | 7.3958 | 710 | 0.0014 | - |
230
- | 7.5 | 720 | 0.0015 | - |
231
- | 7.6042 | 730 | 0.0014 | - |
232
- | 7.7083 | 740 | 0.0014 | - |
233
- | 7.8125 | 750 | 0.0014 | - |
234
- | 7.9167 | 760 | 0.0015 | - |
235
- | 8.0208 | 770 | 0.0013 | - |
236
- | 8.125 | 780 | 0.0014 | - |
237
- | 8.2292 | 790 | 0.0014 | - |
238
- | 8.3333 | 800 | 0.0014 | - |
239
- | 8.4375 | 810 | 0.0014 | - |
240
- | 8.5417 | 820 | 0.0014 | - |
241
- | 8.6458 | 830 | 0.0014 | - |
242
- | 8.75 | 840 | 0.0013 | - |
243
- | 8.8542 | 850 | 0.0013 | - |
244
- | 8.9583 | 860 | 0.0013 | - |
245
- | 9.0625 | 870 | 0.0013 | - |
246
- | 9.1667 | 880 | 0.0014 | - |
247
- | 9.2708 | 890 | 0.0013 | - |
248
- | 9.375 | 900 | 0.0012 | - |
249
- | 9.4792 | 910 | 0.0013 | - |
250
- | 9.5833 | 920 | 0.0012 | - |
251
- | 9.6875 | 930 | 0.0013 | - |
252
- | 9.7917 | 940 | 0.0013 | - |
253
- | 9.8958 | 950 | 0.0013 | - |
254
- | 10.0 | 960 | 0.0014 | - |
255
- | 0.0008 | 1 | 0.2276 | - |
256
- | 0.0083 | 10 | 0.2361 | - |
257
- | 0.0167 | 20 | 0.1815 | - |
258
- | 0.0250 | 30 | 0.2036 | - |
259
- | 0.0333 | 40 | 0.1783 | - |
260
- | 0.0416 | 50 | 0.1486 | - |
261
- | 0.0500 | 60 | 0.191 | - |
262
- | 0.0583 | 70 | 0.1741 | - |
263
- | 0.0104 | 1 | 0.0021 | - |
264
- | 0.1042 | 10 | 0.002 | - |
265
- | 0.2083 | 20 | 0.0015 | - |
266
- | 0.3125 | 30 | 0.0015 | - |
267
- | 0.4167 | 40 | 0.0013 | - |
268
- | 0.5208 | 50 | 0.0013 | - |
269
- | 0.625 | 60 | 0.0012 | - |
270
- | 0.7292 | 70 | 0.0011 | - |
271
- | 0.8333 | 80 | 0.0012 | - |
272
- | 0.9375 | 90 | 0.0011 | - |
273
- | 1.0417 | 100 | 0.001 | - |
274
- | 1.1458 | 110 | 0.001 | - |
275
- | 1.25 | 120 | 0.0009 | - |
276
- | 1.3542 | 130 | 0.0009 | - |
277
- | 1.4583 | 140 | 0.0008 | - |
278
- | 1.5625 | 150 | 0.0009 | - |
279
- | 1.6667 | 160 | 0.0009 | - |
280
- | 1.7708 | 170 | 0.0008 | - |
281
- | 1.875 | 180 | 0.0008 | - |
282
- | 1.9792 | 190 | 0.0007 | - |
283
- | 2.0833 | 200 | 0.0007 | - |
284
- | 2.1875 | 210 | 0.0007 | - |
285
- | 2.2917 | 220 | 0.0007 | - |
286
- | 2.3958 | 230 | 0.0006 | - |
287
- | 2.5 | 240 | 0.0007 | - |
288
- | 2.6042 | 250 | 0.0007 | - |
289
- | 2.7083 | 260 | 0.0007 | - |
290
- | 2.8125 | 270 | 0.0006 | - |
291
- | 2.9167 | 280 | 0.0006 | - |
292
- | 3.0208 | 290 | 0.0006 | - |
293
- | 3.125 | 300 | 0.0006 | - |
294
- | 3.2292 | 310 | 0.0006 | - |
295
- | 3.3333 | 320 | 0.0006 | - |
296
- | 3.4375 | 330 | 0.0006 | - |
297
- | 3.5417 | 340 | 0.0006 | - |
298
- | 3.6458 | 350 | 0.0005 | - |
299
- | 3.75 | 360 | 0.0005 | - |
300
- | 3.8542 | 370 | 0.0006 | - |
301
- | 3.9583 | 380 | 0.0005 | - |
302
- | 4.0625 | 390 | 0.0005 | - |
303
- | 4.1667 | 400 | 0.0005 | - |
304
- | 4.2708 | 410 | 0.0005 | - |
305
- | 4.375 | 420 | 0.0006 | - |
306
- | 4.4792 | 430 | 0.0005 | - |
307
- | 4.5833 | 440 | 0.0005 | - |
308
- | 4.6875 | 450 | 0.0005 | - |
309
- | 4.7917 | 460 | 0.0005 | - |
310
- | 4.8958 | 470 | 0.0005 | - |
311
- | 5.0 | 480 | 0.0004 | - |
312
- | 5.1042 | 490 | 0.0005 | - |
313
- | 5.2083 | 500 | 0.0005 | - |
314
- | 5.3125 | 510 | 0.0004 | - |
315
- | 5.4167 | 520 | 0.0005 | - |
316
- | 5.5208 | 530 | 0.0005 | - |
317
- | 5.625 | 540 | 0.0005 | - |
318
- | 5.7292 | 550 | 0.0005 | - |
319
- | 5.8333 | 560 | 0.0004 | - |
320
- | 5.9375 | 570 | 0.0004 | - |
321
- | 6.0417 | 580 | 0.0004 | - |
322
- | 6.1458 | 590 | 0.0004 | - |
323
- | 6.25 | 600 | 0.0004 | - |
324
- | 6.3542 | 610 | 0.0005 | - |
325
- | 6.4583 | 620 | 0.0004 | - |
326
- | 6.5625 | 630 | 0.0005 | - |
327
- | 6.6667 | 640 | 0.0004 | - |
328
- | 6.7708 | 650 | 0.0004 | - |
329
- | 6.875 | 660 | 0.0004 | - |
330
- | 6.9792 | 670 | 0.0004 | - |
331
- | 7.0833 | 680 | 0.0004 | - |
332
- | 7.1875 | 690 | 0.0004 | - |
333
- | 7.2917 | 700 | 0.0004 | - |
334
- | 7.3958 | 710 | 0.0004 | - |
335
- | 7.5 | 720 | 0.0004 | - |
336
- | 7.6042 | 730 | 0.0004 | - |
337
- | 7.7083 | 740 | 0.0004 | - |
338
- | 7.8125 | 750 | 0.0004 | - |
339
- | 7.9167 | 760 | 0.0004 | - |
340
- | 8.0208 | 770 | 0.0004 | - |
341
- | 8.125 | 780 | 0.0004 | - |
342
- | 8.2292 | 790 | 0.0004 | - |
343
- | 8.3333 | 800 | 0.0004 | - |
344
- | 8.4375 | 810 | 0.0004 | - |
345
- | 8.5417 | 820 | 0.0004 | - |
346
- | 8.6458 | 830 | 0.0004 | - |
347
- | 8.75 | 840 | 0.0004 | - |
348
- | 8.8542 | 850 | 0.0004 | - |
349
- | 8.9583 | 860 | 0.0004 | - |
350
- | 9.0625 | 870 | 0.0004 | - |
351
- | 9.1667 | 880 | 0.0004 | - |
352
- | 9.2708 | 890 | 0.0004 | - |
353
- | 9.375 | 900 | 0.0004 | - |
354
- | 9.4792 | 910 | 0.0004 | - |
355
- | 9.5833 | 920 | 0.0004 | - |
356
- | 9.6875 | 930 | 0.0004 | - |
357
- | 9.7917 | 940 | 0.0004 | - |
358
- | 9.8958 | 950 | 0.0004 | - |
359
- | 10.0 | 960 | 0.0004 | - |
360
- | 0.0046 | 1 | 0.049 | - |
361
- | 0.4630 | 100 | 0.035 | - |
362
- | 0.9259 | 200 | 0.0097 | - |
363
- | 1.3889 | 300 | 0.0007 | - |
364
- | 1.8519 | 400 | 0.0004 | - |
365
- | 2.3148 | 500 | 0.0004 | - |
366
- | 2.7778 | 600 | 0.0004 | - |
367
- | 3.2407 | 700 | 0.0004 | - |
368
- | 3.7037 | 800 | 0.0004 | - |
369
- | 4.1667 | 900 | 0.0004 | - |
370
- | 4.6296 | 1000 | 0.0003 | - |
371
- | 5.0926 | 1100 | 0.0003 | - |
372
- | 5.5556 | 1200 | 0.0003 | - |
373
- | 6.0185 | 1300 | 0.0003 | - |
374
- | 6.4815 | 1400 | 0.0003 | - |
375
- | 6.9444 | 1500 | 0.0003 | - |
376
- | 7.4074 | 1600 | 0.0003 | - |
377
- | 7.8704 | 1700 | 0.0003 | - |
378
- | 8.3333 | 1800 | 0.0003 | - |
379
- | 8.7963 | 1900 | 0.0003 | - |
380
- | 9.2593 | 2000 | 0.0003 | - |
381
- | 9.7222 | 2100 | 0.0003 | - |
382
 
383
  ### Framework Versions
384
  - Python: 3.11.0
 
1
  ---
2
+ base_model: BAAI/bge-m3
3
  library_name: setfit
4
  metrics:
5
  - accuracy
 
18
  - text: Konstrukcja łóżka piętrowego jest wadliwa, elementy nie pasują do siebie.
19
  inference: true
20
  model-index:
21
+ - name: SetFit with BAAI/bge-m3
22
  results:
23
  - task:
24
  type: text-classification
 
29
  split: test
30
  metrics:
31
  - type: accuracy
32
+ value: 0.8632478632478633
33
  name: Accuracy
34
  ---
35
 
36
+ # SetFit with BAAI/bge-m3
37
 
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
 
40
  The model has been trained using an efficient few-shot learning technique that involves:
41
 
 
46
 
47
  ### Model Description
48
  - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
50
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 8192 tokens
52
  - **Number of Classes:** 4 classes
53
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
  <!-- - **Language:** Unknown -->
 
61
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
 
63
  ### Model Labels
64
+ | Label | Examples |
65
+ |:---------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | błędny montaż | <ul><li>'Pojemnik pod łóżkiem jest źle zamontowany i nie otwiera się.'</li><li>'Nogi komody nowoczesnej źle przymocowane i komoda jest niestabilna.'</li><li>'Oświetlenie w witrynie z oświetleniem jest źle podłączone i nie działa.'</li></ul> |
67
+ | wady fabryczne | <ul><li>'Front szafki RTV jest uszkodzony, posiada wgniecenie i rysę.'</li><li>'Tapicerka krzesła jest rozdarcia.'</li><li>'Blat biurka narożnego ma pęknięcie, widoczne gołym okiem.'</li></ul> |
68
+ | niezgodność towaru z zamówieniem | <ul><li>'Materiał szafy Prosty jest inny niż ten, który został zamówiony.'</li><li>'Regał narożny ma inne wymiary niż te, które zostały podane w zamówieniu.'</li><li>'Zamówiony fotel bujany miał zawierać poduszkę, której nie ma w przesyłce. Potwierdzenie zamówienia wskazuje na dołączoną poduszkę.'</li></ul> |
69
+ | uszkodzenia | <ul><li>'Szyba stolika kawowego Minimal jest pęknięta.'</li><li>'Prowadnice szuflad w szafie wnękowej Max uszkodzone.'</li><li>'Drzwiczki szafy na buty Shoes uszkodzone.'</li></ul> |
70
 
71
  ## Evaluation
72
 
73
  ### Metrics
74
  | Label | Accuracy |
75
  |:--------|:---------|
76
+ | **all** | 0.8632 |
77
 
78
  ## Uses
79
 
 
123
  ## Training Details
124
 
125
  ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:-------|:----|
128
+ | Word count | 4 | 10.0 | 20 |
129
 
130
  | Label | Training Sample Count |
131
  |:---------------------------------|:----------------------|
132
+ | uszkodzenia | 8 |
133
+ | wady fabryczne | 8 |
134
+ | niezgodność towaru z zamówieniem | 8 |
135
+ | błędny montaż | 8 |
136
 
137
  ### Training Hyperparameters
138
  - batch_size: (32, 32)
 
155
  ### Training Results
156
  | Epoch | Step | Training Loss | Validation Loss |
157
  |:------:|:----:|:-------------:|:---------------:|
158
+ | 0.0417 | 1 | 0.1938 | - |
159
+ | 4.1667 | 100 | 0.0392 | - |
160
+ | 8.3333 | 200 | 0.0011 | - |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
  ### Framework Versions
163
  - Python: 3.11.0
config.json CHANGED
@@ -1,31 +1,28 @@
1
  {
2
- "_name_or_path": "BAAI/bge-small-en-v1.5",
3
  "architectures": [
4
- "BertModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
 
7
  "classifier_dropout": null,
 
8
  "hidden_act": "gelu",
9
  "hidden_dropout_prob": 0.1,
10
- "hidden_size": 384,
11
- "id2label": {
12
- "0": "LABEL_0"
13
- },
14
  "initializer_range": 0.02,
15
- "intermediate_size": 1536,
16
- "label2id": {
17
- "LABEL_0": 0
18
- },
19
- "layer_norm_eps": 1e-12,
20
- "max_position_embeddings": 512,
21
- "model_type": "bert",
22
- "num_attention_heads": 12,
23
- "num_hidden_layers": 12,
24
- "pad_token_id": 0,
25
  "position_embedding_type": "absolute",
26
  "torch_dtype": "float32",
27
  "transformers_version": "4.44.2",
28
- "type_vocab_size": 2,
29
  "use_cache": true,
30
- "vocab_size": 30522
31
  }
 
1
  {
2
+ "_name_or_path": "BAAI/bge-m3",
3
  "architectures": [
4
+ "XLMRobertaModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
  "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
 
 
 
13
  "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
 
 
22
  "position_embedding_type": "absolute",
23
  "torch_dtype": "float32",
24
  "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
  "use_cache": true,
27
+ "vocab_size": 250002
28
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4311eb5c18640caba9acc56709d4a03bcc4dc0083e8664a6f37adadd5b0be116
3
- size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5afa630367ef1327aff1a6dcf42118c89e56361a8ae8af02fa88cd8ef7787623
3
+ size 2271064456
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d2aa0524b52f8838d0aa130ed7ae8e5cfa7a6d9e038b44f39aabe389e5ba0cf
3
- size 13191
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b59f9f198aa646bc719aeaace8f57453440fefc37dab054d4a9f53ee932ad7f7
3
+ size 33671
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 512,
3
- "do_lower_case": true
4
  }
 
1
  {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
  }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json CHANGED
@@ -1,34 +1,48 @@
1
  {
 
 
 
 
 
 
 
2
  "cls_token": {
3
- "content": "[CLS]",
4
  "lstrip": false,
5
  "normalized": false,
6
  "rstrip": false,
7
  "single_word": false
8
  },
9
- "mask_token": {
10
- "content": "[MASK]",
11
  "lstrip": false,
12
  "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
15
  },
 
 
 
 
 
 
 
16
  "pad_token": {
17
- "content": "[PAD]",
18
  "lstrip": false,
19
  "normalized": false,
20
  "rstrip": false,
21
  "single_word": false
22
  },
23
  "sep_token": {
24
- "content": "[SEP]",
25
  "lstrip": false,
26
  "normalized": false,
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
  "unk_token": {
31
- "content": "[UNK]",
32
  "lstrip": false,
33
  "normalized": false,
34
  "rstrip": false,
 
1
  {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
  "cls_token": {
10
+ "content": "<s>",
11
  "lstrip": false,
12
  "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
+ "eos_token": {
17
+ "content": "</s>",
18
  "lstrip": false,
19
  "normalized": false,
20
  "rstrip": false,
21
  "single_word": false
22
  },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
  "pad_token": {
31
+ "content": "<pad>",
32
  "lstrip": false,
33
  "normalized": false,
34
  "rstrip": false,
35
  "single_word": false
36
  },
37
  "sep_token": {
38
+ "content": "</s>",
39
  "lstrip": false,
40
  "normalized": false,
41
  "rstrip": false,
42
  "single_word": false
43
  },
44
  "unk_token": {
45
+ "content": "<unk>",
46
  "lstrip": false,
47
  "normalized": false,
48
  "rstrip": false,
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,57 +1,55 @@
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
- "content": "[PAD]",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
- "100": {
12
- "content": "[UNK]",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
- "101": {
20
- "content": "[CLS]",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
- "102": {
28
- "content": "[SEP]",
29
  "lstrip": false,
30
  "normalized": false,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
- "103": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
  }
43
  },
 
44
  "clean_up_tokenization_spaces": true,
45
- "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
- "do_lower_case": true,
48
- "mask_token": "[MASK]",
49
- "model_max_length": 512,
50
- "never_split": null,
51
- "pad_token": "[PAD]",
52
- "sep_token": "[SEP]",
53
- "strip_accents": null,
54
- "tokenize_chinese_chars": true,
55
- "tokenizer_class": "BertTokenizer",
56
- "unk_token": "[UNK]"
57
  }
 
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
+ "content": "<s>",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
+ "1": {
12
+ "content": "<pad>",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
+ "2": {
20
+ "content": "</s>",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
+ "3": {
28
+ "content": "<unk>",
29
  "lstrip": false,
30
  "normalized": false,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
  }
43
  },
44
+ "bos_token": "<s>",
45
  "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
 
 
 
55
  }