double batch, epochs, steps, timesteps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-003.zip +2 -2
- ppo-LunarLander-v2-003/data +5 -5
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 288.87 +/- 19.10
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>", "_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688251256380990106, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACQyDzppAm87bn1vL3tzTw1mW89zo2pvQAAgD8AAIA/jdSOvVQ+sD8IDAa/UtGLvqq9Jb1XnZG+AAAAAAAAAADmQDs9XBc3uo6mNrhJYbay9rkZu+h+VjcAAIA/AACAP7NJbT1xvkW7pbTwvSDD1jxRlo48U8dzvQAAgD8AAAAAZgBsPa9uvj+Tt/E+Cs00Pv6/Ij2xhIc+AAAAAAAAAADN+Ag8XLMQum5fHTtUzZw0kefAOrpbpDMAAIA/AACAP2aC+bxSUOq5UGZ3OKaPgjJzwt66q+OStwAAgD8AAIA/wAmnPaPWSj2j9aO+/YOhvrgjY73p0Su+AAAAAAAAAACaOyQ9XHNousvl6rRaIACv2qZyugbWTjQAAIA/AACAP+YNLL2PZmq6wEmBNvoqATIgz9U6rgGUtQAAgD8AAIA/s7alPdcLuT4pvzm9360mvx105T0aVIS9AAAAAAAAAABNgi+9JD0gPEvYxT6A/3++UieGPnZ1ML8AAAAAAACAP8CiHj5q7JQ/drEVPzF1LL+xGYI+Vl7UPgAAAAAAAAAAZiesvO7HwLwte7w+JZQtPVhn9zxUWsq6AACAPwAAAACzSRG9iSpePci1Uz6Car2+1VHMPWNBUD4AAAAAAAAAAGbWVLyWU7M/9rkmv3cab76/AFY86KvgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC6x2B8QZqMAWyUS5SMAXSUR0DBn7xn6EamdX2UKGgGR0BwxZgXuVopaAdLmmgIR0DBn7y2lVLjdX2UKGgGR0BypEhib2DhaAdLxWgIR0DBn8Vkxyn2dX2UKGgGR0Bw1yOMl1KXaAdLpmgIR0DBn8OcJ+lTdX2UKGgGR0BxsQAggX/HaAdLvGgIR0DBn8m4y44IdX2UKGgGR0BwLLWPLgXNaAdLpGgIR0DBn9FbX6IndX2UKGgGR0BzhFosZpBYaAdLyWgIR0DBn9dytFKDdX2UKGgGR0Bwi+0tyxRmaAdLn2gIR0DBn9r3XZoPdX2UKGgGR0BzvMHB1s+FaAdLxWgIR0DBn+kO/cnFdX2UKGgGR0BwiOMIeHSGaAdLoGgIR0DBn+tw5vLpdX2UKGgGR0Bx4VYzSCvpaAdLpWgIR0DBn+zPKMefdX2UKGgGR0BzCNGLDQ7caAdLwmgIR0DBn/BWvKU3dX2UKGgGR0BxpDgQ6IWQaAdLlmgIR0DBn/+PxQSBdX2UKGgGR0BwOp1EE1VHaAdLomgIR0DBoAj/dZaFdX2UKGgGR0ByON+1Bt1qaAdLvmgIR0DBoA/HmzSkdX2UKGgGR0BwgGqDK5kLaAdLpmgIR0DBoCCi9IwudX2UKGgGR0Bz1oZqEeySaAdL12gIR0DBoCHfsNUgdX2UKGgGR0Bzlmv6j323aAdLvWgIR0DBoC9M0xdqdX2UKGgGR0Byc95iVjZtaAdLuGgIR0DBoDSHEdeZdX2UKGgGR0BzmrDNyHVPaAdLvmgIR0DBoDzujRD1dX2UKGgGR0BxtBWYF7laaAdLs2gIR0DBoD6z5XU6dX2UKGgGR0B0mM7+1jRVaAdLzWgIR0DBoD/rnkksdX2UKGgGR0Bx0LPKMefaaAdLkWgIR0DBoELtTkyUdX2UKGgGR0ByfAuzyBkJaAdLlWgIR0DBoEdVR1oydX2UKGgGR0B0ANPVNHpbaAdLuGgIR0DBoEtadMCcdX2UKGgGR0By8lB0IToMaAdLxmgIR0DBoE/eJpFkdX2UKGgGR0Bx8smb9ZRsaAdLo2gIR0DBoFNe4TbndX2UKGgGR0Bx1rA+IMz/aAdLjmgIR0DBoFb8FY+0dX2UKGgGR0Bwr+GIsRQKaAdLsmgIR0DBoFmVAzHkdX2UKGgGR0BzJgavRqoIaAdLtmgIR0DBoH8XgtOEdX2UKGgGR0BzZsJAt4A0aAdLwWgIR0DBoIBBHCoCdX2UKGgGR0BzX0KSgXdkaAdLxWgIR0DBoJw/Z/TcdX2UKGgGR0Bx7FW3jMmnaAdLmWgIR0DBoJ8cp9ZzdX2UKGgGR0Byv2ZPVNHpaAdLuGgIR0DBoKHU+cH4dX2UKGgGR0B0hYK4QSSNaAdL2WgIR0DBoKfMOf/WdX2UKGgGR0BxBJjFyaNNaAdLsWgIR0DBoLCxVyWBdX2UKGgGR0By2oRSP2f1aAdLumgIR0DBoLBi/fwadX2UKGgGR0Bx/DSc9W6taAdLt2gIR0DBoLBRTCLudX2UKGgGR0ByuAOd5IH1aAdLwWgIR0DBoL8FGG21dX2UKGgGR0Bxw7wYtQKsaAdLumgIR0DBoL7433pOdX2UKGgGR0B0ojh4t6HCaAdL4WgIR0DBoMABeXzEdX2UKGgGR0BxUpERaouPaAdLqWgIR0DBoME8FINFdX2UKGgGR0BxIU/+sHSnaAdLomgIR0DBoL+A5JbudX2UKGgGR0ByaQ+W4Vh1aAdLrWgIR0DBoMATXarWdX2UKGgGR0BxiHHT7VJ+aAdLuGgIR0DBoMK3/givdX2UKGgGR0By62dxyXD4aAdLvWgIR0DBoPSMHbAUdX2UKGgGR0BzofMqz7djaAdLyWgIR0DBoPuq3mV8dX2UKGgGR0BxFxiExqO+aAdLq2gIR0DBoQQOrhitdX2UKGgGR0Bxf1o+OfdzaAdLqmgIR0DBoQY7cO9WdX2UKGgGR0BxhtUcXFcZaAdLs2gIR0DBoQ42OyVwdX2UKGgGR0BzM01pCa7VaAdLpWgIR0DBoRVu1ndwdX2UKGgGR0BzBwGwA2hqaAdLp2gIR0DBoRYgeRxMdX2UKGgGR0BzXY0waisXaAdLwmgIR0DBoR2L9/BndX2UKGgGR0BwXWJqIrOJaAdLn2gIR0DBoR+sDGLldX2UKGgGR0BxfzAM2FWXaAdLoGgIR0DBoSE6kqMFdX2UKGgGR0ByUX/Pw/gSaAdLvWgIR0DBoSLqrzXjdX2UKGgGR0Bx/m/Dcdo4aAdLpmgIR0DBoSW8mKIjdX2UKGgGR0B0ij3TNMXaaAdLrWgIR0DBoSeqBErodX2UKGgGR0BxTdvitJWeaAdLq2gIR0DBoSnBciW3dX2UKGgGR0B0MY7q6e5GaAdLt2gIR0DBoS2fK6nSdX2UKGgGR0ByIM4ffXPJaAdLyWgIR0DBoTbXFtKqdX2UKGgGR0BwwL3mFJxvaAdLsmgIR0DBoWANLDhtdX2UKGgGR0BvxC5y2hIwaAdLp2gIR0DBoV/MQmNSdX2UKGgGR0BxYvMnqmj1aAdLoWgIR0DBoWpzT4L1dX2UKGgGR0BxQF5prULEaAdLrGgIR0DBoXGfTTfBdX2UKGgGR0ByEUMVk+X7aAdLnmgIR0DBoXQZjx0/dX2UKGgGR0ByRaYF7laKaAdLmGgIR0DBoXh9RaX8dX2UKGgGR0BxuXDDTBqLaAdLmmgIR0DBoYlr0rbydX2UKGgGR0ByT4XGff4zaAdLmWgIR0DBoYuWjXWfdX2UKGgGR0BytwCFK02MaAdLpWgIR0DBoY53/xUedX2UKGgGR0BxaTS0BwMqaAdLumgIR0DBoZR/0/W2dX2UKGgGR0BwMHyI55quaAdLl2gIR0DBoZWCK77LdX2UKGgGR0ByMSo73fygaAdLtGgIR0DBoZ4BHTZydX2UKGgGR0ByqWmALApKaAdLsmgIR0DBoaRng5zYdX2UKGgGR0BDAFIEr5IpaAdLWGgIR0DBobqXjU/fdX2UKGgGR0BzKaNYKYzBaAdLvWgIR0DBobqL0jC6dX2UKGgGR0Bz23HNorWiaAdLymgIR0DBobxUT+NtdX2UKGgGR0BxZXdfsu3+aAdLtmgIR0DBocIGQjlgdX2UKGgGR0ByUB55Z8rqaAdLjGgIR0DBodUzGgjAdX2UKGgGR0BwQ8PDpC8faAdLlGgIR0DBodtXRw6ydX2UKGgGR0ByOSarmyPdaAdLn2gIR0DBofd1bJOndX2UKGgGR0BybtcMVk+YaAdLkmgIR0DBog2hZha1dX2UKGgGR0BxyzeGfwqiaAdLoGgIR0DBog7fNzKcdX2UKGgGR0ByjyRuCPIXaAdLwmgIR0DBog1T1kDqdX2UKGgGR0BycfdP+GXYaAdLrWgIR0DBohxUvPC3dX2UKGgGR0Bw0AqSX+l1aAdLpWgIR0DBoh21UlzEdX2UKGgGR0ByvmPsAvL6aAdLtWgIR0DBoiUVpKzzdX2UKGgGR0B0eOyUs4DLaAdL4GgIR0DBojMALiMpdX2UKGgGR0Bw4hCrtE5RaAdLtmgIR0DBojvOryUcdX2UKGgGR0B0RkEW69TQaAdLw2gIR0DBoj+YtxuLdX2UKGgGR0Bwba40/GEPaAdLnmgIR0DBoj6U5dWydX2UKGgGR0BxHfuJDVpcaAdLmmgIR0DBokKNQ0oCdX2UKGgGR0BxfR8OTaCdaAdLq2gIR0DBokqBPKuCdX2UKGgGR0ByL1P8AJb/aAdLnGgIR0DBolsGNaQndX2UKGgGR0BzWiYplSTAaAdLw2gIR0DBol+xB3RpdX2UKGgGR0BxZ9iG34KyaAdLumgIR0DBon2EM9bHdX2UKGgGR0Bz72iWVu76aAdLv2gIR0DBoqQZIg/1dX2UKGgGR0BwEWUNayKOaAdLsWgIR0DBorEMb3oLdX2UKGgGR0Bx4U4LkS26aAdLs2gIR0DBorIVZcLSdX2UKGgGR0BwTXskY4yXaAdLu2gIR0DBorpX4j8ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1480, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQxooOv9KFaGO8Q16rFSu/AIwDaW5jlIoRz/cMvwhmIdXh4C5XXXeh0gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKx67XY3VidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>", "_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 0, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688253407070439212, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAxj73sEMS76pSYPuNoIT21xjK809gCvQAAAAAAAIA/bZUJvmZRrD7wBCo+p+Ynv2N0Sr7vJS0+AAAAAAAAAAAm7aA95MmxPkVMj72T4jK/lk3ZPd67br0AAAAAAAAAAIaNNz4HoI4+jruQvn+3Dr/RKHo+g41bvgAAAAAAAAAAAMZHPSnMaLpYfeg6N9cBNv24+jqWDwi6AACAPwAAgD+A5kA91zZ7u+oFFT7OpAs8iFejvFpF+jwAAIA/AACAP7MmML7ORww/5kBSPg18Ur+JJoO+Wg+CPgAAAAAAAAAAM90NvAo0K7tCM6A9ICOYPKINL7xU6YI9AACAPwAAgD8A5O67wylXugrR+TxJ9XSyVfGVu18wBrQAAIA/AACAP82hd72bDIm83Eg9PmcgCL31qjq90sXrvQAAgD8AAIA/zVpiPMOpQ7osvYK2xlEZsgA5ibd4Z5c1AACAPwAAgD8t+00+dfakPlkgs75joxy/tH4JPrjVpr4AAAAAAAAAAJo9oDyDLV28hzLJPTc2kj1ZPpG8PdOjugAAgD8AAIA/mnyLPHHAB7tm1s09UwWWPIfcDLzOg4E9AACAPwAAgD+zPic91zwpPKKEir4fyae+p/i3vOjNU74AAAAAAAAAAM2atTwUMLw/Kx9CPrL02T1imUW8lsP6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1480, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQxooOv9KFaGO8Q16rFSu/AIwDaW5jlIoRz/cMvwhmIdXh4C5XXXeh0gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKx67XY3VidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-003.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70979f401ad29cd83f1922550ee4b96c5bcfc45cba0e85615793a6d5d22961b
|
3 |
+
size 142853
|
ppo-LunarLander-v2-003/data
CHANGED
@@ -21,17 +21,17 @@
|
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 0,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1688253407070439212,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAxj73sEMS76pSYPuNoIT21xjK809gCvQAAAAAAAIA/bZUJvmZRrD7wBCo+p+Ynv2N0Sr7vJS0+AAAAAAAAAAAm7aA95MmxPkVMj72T4jK/lk3ZPd67br0AAAAAAAAAAIaNNz4HoI4+jruQvn+3Dr/RKHo+g41bvgAAAAAAAAAAAMZHPSnMaLpYfeg6N9cBNv24+jqWDwi6AACAPwAAgD+A5kA91zZ7u+oFFT7OpAs8iFejvFpF+jwAAIA/AACAP7MmML7ORww/5kBSPg18Ur+JJoO+Wg+CPgAAAAAAAAAAM90NvAo0K7tCM6A9ICOYPKINL7xU6YI9AACAPwAAgD8A5O67wylXugrR+TxJ9XSyVfGVu18wBrQAAIA/AACAP82hd72bDIm83Eg9PmcgCL31qjq90sXrvQAAgD8AAIA/zVpiPMOpQ7osvYK2xlEZsgA5ibd4Z5c1AACAPwAAgD8t+00+dfakPlkgs75joxy/tH4JPrjVpr4AAAAAAAAAAJo9oDyDLV28hzLJPTc2kj1ZPpG8PdOjugAAgD8AAIA/mnyLPHHAB7tm1s09UwWWPIfcDLzOg4E9AACAPwAAgD+zPic91zwpPKKEir4fyae+p/i3vOjNU74AAAAAAAAAAM2atTwUMLw/Kx9CPrL02T1imUW8lsP6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 288.87060790000004, "std_reward": 19.095685792317067, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-01T23:17:06.754472"}
|