Test unit 1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 243.01 +/- 28.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>", "_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688244414374638066, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorvjxxPTC56Ix6OrZ6gTZshnS7dvuXuQAAgD8AAIA/AKrAPfYsdrq6Cma7h7iQOGOuYrt34745AACAPwAAgD8AkEQ9jzJiutqBWbhcm1Gz6XcnO6O2fzcAAIA/AACAPzOjKD2uxZ+6drqTu66HsTgiu0e6PhwHOgAAgD8AAIA/IMQzvjQNNT8D/wo9pjMJvpBoj70UEcw9AAAAAAAAAADNMjg9cT1ZOLoRB7wm8ky23+19u0/TujUAAIA/AACAP7OlDz6XQAs/hebhvW5LUr6ZnVK9Jrw5PQAAAAAAAAAAmmrpvK7FtLob6B86zQA4NKaEBjpTgja5AACAPwAAgD+aibM7SLuGuqqjmjogtZA1y5QxujYntLkAAIA/AACAPwCsMLwp+Aa6ETdCvKvBGLVDDDA5CmGFNAAAgD8AAIA/zS7LPFLws7kuqla6hFfgNMEeuzrbLHw5AACAPwAAgD+zdym9w6lSuiC8mTpcAKk1k1/TuYMcrrkAAIA/AACAPwAU+rt7PqG6mPUpu7GLrrbCYFK6uL9DOgAAgD8AAIA/xiw3PpB0lj5QvF871K6EvrK3YD0onGk9AAAAAAAAAAAz5Qi9eO2sPdvLlT2XLDC+mtFGvKh/xbsAAAAAAAAAAAAAprl7EIq6FOw5ujOiKbQEqA+7G7ZVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNE0CaJAMWMAWyUTegDjAF0lEdAligoJJGvwHV9lChoBkdAYyaeIVM232gHTegDaAhHQJYtIdLg4wR1fZQoaAZHQGNFuC5EtuloB03oA2gIR0CWMEQSi/O/dX2UKGgGR0BhoBjOLR8daAdN6ANoCEdAljLUXP7emHV9lChoBkdAXYqntOVPe2gHTegDaAhHQJY2weXAuZl1fZQoaAZHQGS5lRxcVxloB03oA2gIR0CWNsUD+zdDdX2UKGgGR0BhLYtrbg0kaAdN6ANoCEdAljqE8/2TPnV9lChoBkdAZP+OU+s5n2gHTegDaAhHQJY8wmmce8x1fZQoaAZHQGVJtvwVj7RoB03oA2gIR0CWP3+85CF9dX2UKGgGR0BgYgIOYplSaAdN6ANoCEdAlkBHMpw0f3V9lChoBkdAYF/8JD3M6mgHTegDaAhHQJZHQnkT6BR1fZQoaAZHQF1eHwgDA8BoB03oA2gIR0CWSYxZMcp9dX2UKGgGR0Bj5wgow22oaAdN6ANoCEdAllEyWiUPhHV9lChoBkdAZA//7zkIX2gHTegDaAhHQJZR8OVgQYl1fZQoaAZHQEd6ShakhzNoB00PAWgIR0CWVvUuL740dX2UKGgGR0BeoK+BYmsvaAdN6ANoCEdAllxLQ5WBBnV9lChoBkdAYkd2Xb/OuGgHTegDaAhHQJZfjiXIEKV1fZQoaAZHQGJAXNs3yZtoB03oA2gIR0CWgCgF5fMOdX2UKGgGR0Bj3cLYwqRVaAdN6ANoCEdAloUVW8yvcXV9lChoBkdAYlPJ6IFeOWgHTegDaAhHQJaIVI/Z/Td1fZQoaAZHQGL5PDP4VRFoB03oA2gIR0CWiqFB6a9cdX2UKGgGR0BgQnxMFlkIaAdN6ANoCEdAlo27N8ma6XV9lChoBkdAY5LhVlwtKGgHTegDaAhHQJaNvaK1og51fZQoaAZHQGBkK508vEloB03oA2gIR0CWkHl5GBnSdX2UKGgGR0Bh14fCAMDwaAdN6ANoCEdAlpIZgXuVo3V9lChoBkdAXhTBk7Omi2gHTegDaAhHQJaUD84xUNt1fZQoaAZHQGMVcFQl8gJoB03oA2gIR0CWlJ/I8yN5dX2UKGgGR0BdzfUz9CNTaAdN6ANoCEdAlpzZB1LamHV9lChoBkdARcmhVU+9rWgHS+ZoCEdAlp7WLcbiqHV9lChoBkdAZB+hmGucMGgHTegDaAhHQJalJCE6DGt1fZQoaAZHQF5iVvddmg9oB03oA2gIR0CWpgV7x/d7dX2UKGgGR0Bj+r5bhWHUaAdN6ANoCEdAlq1lrdnCf3V9lChoBkdAYkK3HaN+9mgHTegDaAhHQJa1H4gzP8h1fZQoaAZHQGODSvTw2EVoB03oA2gIR0CWuXDlHSWrdX2UKGgGR0BfyhXjlxOtaAdN6ANoCEdAltVOT7l7t3V9lChoBkdAWTcYQ8OkL2gHTegDaAhHQJbaOh24d6t1fZQoaAZHQGFdgckt29toB03oA2gIR0CW3VIrvsqsdX2UKGgGR0Bgz/BSDRMOaAdN6ANoCEdAlt+dV7x/eHV9lChoBkdAYcGq0+kgwGgHTegDaAhHQJbjMDGLk0d1fZQoaAZHQGCeAR02caxoB03oA2gIR0CW4zQmeDnOdX2UKGgGR0Bgzh3iaRZEaAdN6ANoCEdAlubt/WlMy3V9lChoBkdAWZlspG4I8mgHTegDaAhHQJbsTytmthd1fZQoaAZHQGHacQI2OyVoB03oA2gIR0CW7SSG8EmqdX2UKGgGR0BgTh9G7SRbaAdN6ANoCEdAlvhkE1VHWnV9lChoBkdAYTxHxSYPXmgHTegDaAhHQJb6pAbADaJ1fZQoaAZHQF8kGYKIBR1oB03oA2gIR0CXAY2FFlTWdX2UKGgGR0BjcGUW2w3YaAdN6ANoCEdAlwJ9znzQNXV9lChoBkdAZF37F85S32gHTegDaAhHQJcJRAIIF/x1fZQoaAZHQFnkrXlKbrloB03oA2gIR0CXD8wnYxtYdX2UKGgGR0Blz1YQrc0taAdN6ANoCEdAlxO+doWYW3V9lChoBkdAKq0S7GvOhWgHTQkBaAhHQJcWL212JSB1fZQoaAZHQGKx5U96kZdoB03oA2gIR0CXNoWKMvRJdX2UKGgGR0BXfdbTtsvaaAdN6ANoCEdAlzwomois4nV9lChoBkdAYXrASnLq2WgHTegDaAhHQJc/qL876pJ1fZQoaAZHQFoTLwWnCO5oB03oA2gIR0CXQjrzoUzsdX2UKGgGR0BbfRkVeruIaAdN6ANoCEdAl0V9diUgS3V9lChoBkdAYn5dadMCcWgHTegDaAhHQJdFfvF3pwF1fZQoaAZHQGGslLFn7HhoB03oA2gIR0CXSIvUSZjQdX2UKGgGR0BfIK86FM7EaAdN6ANoCEdAl0xvYWcjJXV9lChoBkdAX+7pwCKaX2gHTegDaAhHQJdNBhvze411fZQoaAZHQGWGuLaVUuNoB03oA2gIR0CXVfZezD4ydX2UKGgGR0BjyC0Sh8IBaAdN6ANoCEdAl1jY1cdHUnV9lChoBkdAZGYtBfKISGgHTegDaAhHQJdjGfI0ZWJ1fZQoaAZHQE/CBkqc3ERoB00xAWgIR0CXZC0dBBzFdX2UKGgGR0BiwxTGYKIBaAdN6ANoCEdAl2oIuoP07XV9lChoBkdAY8vHCoCMgmgHTegDaAhHQJdvtZs9B8h1fZQoaAZHQGX4jrAxi5NoB03oA2gIR0CXcx6reZXudX2UKGgGR0BhgXQ2MsH0aAdN6ANoCEdAl3UsFyJbdXV9lChoBkdAX0BzV+Zw42gHTegDaAhHQJeOrP0I1Lt1fZQoaAZHQGSDX3QD3dtoB03oA2gIR0CXlQxXGOuJdX2UKGgGR0BjKQXO4XoDaAdN6ANoCEdAl5lIfCAMD3V9lChoBkdAYIWdcSoOx2gHTegDaAhHQJeci3pfQa91fZQoaAZHQGVWOeSSvDBoB03oA2gIR0CXoMbyYoiLdX2UKGgGR0BgnlZ9uxbCaAdN6ANoCEdAl6DJtm+TNnV9lChoBkdAYOCdat9x62gHTegDaAhHQJej6kXUH6d1fZQoaAZHQFmD1EE1VHZoB03oA2gIR0CXp+5QxesxdX2UKGgGR0Bex+p4rz5HaAdN6ANoCEdAl7KVxOtW/HV9lChoBkdAYs1Ux20Re2gHTegDaAhHQJe07yQPqcF1fZQoaAZHQGUxZGax5cFoB03oA2gIR0CXvPvG6wt8dX2UKGgGR0BgPKIWP91maAdN6ANoCEdAl73PYFqzq3V9lChoBkdAY/Gox59mYmgHTegDaAhHQJfDUJUo8ZF1fZQoaAZHQGBZKebutwJoB03oA2gIR0CXyVDSPU8WdX2UKGgGR0BhIxqVQhwEaAdN6ANoCEdAl84L5IpYtHV9lChoBkdAXGYIOYplSWgHTegDaAhHQJfQxhoduHh1fZQoaAZHQGByhQ3xWktoB03oA2gIR0CX7bij+JgtdX2UKGgGR0BhC6T+vQnhaAdN6ANoCEdAl/KxuwX67HV9lChoBkdAYWD54W1twmgHTegDaAhHQJf2DDVH4Gl1fZQoaAZHQGMTzot+TeRoB03oA2gIR0CX+JuPV/c4dX2UKGgGR0BiUesxO+IuaAdN6ANoCEdAl/uYcNpdr3V9lChoBkdAZdSJJoTPB2gHTegDaAhHQJf7mSntOVR1fZQoaAZHQF2kKzAvcrRoB03oA2gIR0CX/oyMkyDadX2UKGgGR0Bh10FY+0PZaAdN6ANoCEdAmAJgT7EYO3V9lChoBkdAYxVs7+1jRWgHTegDaAhHQJgQbqNZNfx1fZQoaAZHQGHleuvECNloB03oA2gIR0CYE45v99+gdX2UKGgGR0BkCM2eg+QmaAdN6ANoCEdAmBtrPt2LYXV9lChoBkdAYoUwV0tAcGgHTegDaAhHQJgcFU6xPft1fZQoaAZHQGMhkQoTfzloB03oA2gIR0CYIFmkWRA9dX2UKGgGR0Bi05nxri2laAdN6ANoCEdAmCVD0cwQDnV9lChoBkdAYHwgYgq3E2gHTegDaAhHQJgoLuc+aBt1fZQoaAZHQGGZJ2t+1BtoB03oA2gIR0CYKe6bONYKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:550ea8600147d8576cc1e9be9c11641b249407c9217d273669a35023264c7099
|
3 |
+
size 146755
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688244414374638066,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorvjxxPTC56Ix6OrZ6gTZshnS7dvuXuQAAgD8AAIA/AKrAPfYsdrq6Cma7h7iQOGOuYrt34745AACAPwAAgD8AkEQ9jzJiutqBWbhcm1Gz6XcnO6O2fzcAAIA/AACAPzOjKD2uxZ+6drqTu66HsTgiu0e6PhwHOgAAgD8AAIA/IMQzvjQNNT8D/wo9pjMJvpBoj70UEcw9AAAAAAAAAADNMjg9cT1ZOLoRB7wm8ky23+19u0/TujUAAIA/AACAP7OlDz6XQAs/hebhvW5LUr6ZnVK9Jrw5PQAAAAAAAAAAmmrpvK7FtLob6B86zQA4NKaEBjpTgja5AACAPwAAgD+aibM7SLuGuqqjmjogtZA1y5QxujYntLkAAIA/AACAPwCsMLwp+Aa6ETdCvKvBGLVDDDA5CmGFNAAAgD8AAIA/zS7LPFLws7kuqla6hFfgNMEeuzrbLHw5AACAPwAAgD+zdym9w6lSuiC8mTpcAKk1k1/TuYMcrrkAAIA/AACAPwAU+rt7PqG6mPUpu7GLrrbCYFK6uL9DOgAAgD8AAIA/xiw3PpB0lj5QvF871K6EvrK3YD0onGk9AAAAAAAAAAAz5Qi9eO2sPdvLlT2XLDC+mtFGvKh/xbsAAAAAAAAAAAAAprl7EIq6FOw5ujOiKbQEqA+7G7ZVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNE0CaJAMWMAWyUTegDjAF0lEdAligoJJGvwHV9lChoBkdAYyaeIVM232gHTegDaAhHQJYtIdLg4wR1fZQoaAZHQGNFuC5EtuloB03oA2gIR0CWMEQSi/O/dX2UKGgGR0BhoBjOLR8daAdN6ANoCEdAljLUXP7emHV9lChoBkdAXYqntOVPe2gHTegDaAhHQJY2weXAuZl1fZQoaAZHQGS5lRxcVxloB03oA2gIR0CWNsUD+zdDdX2UKGgGR0BhLYtrbg0kaAdN6ANoCEdAljqE8/2TPnV9lChoBkdAZP+OU+s5n2gHTegDaAhHQJY8wmmce8x1fZQoaAZHQGVJtvwVj7RoB03oA2gIR0CWP3+85CF9dX2UKGgGR0BgYgIOYplSaAdN6ANoCEdAlkBHMpw0f3V9lChoBkdAYF/8JD3M6mgHTegDaAhHQJZHQnkT6BR1fZQoaAZHQF1eHwgDA8BoB03oA2gIR0CWSYxZMcp9dX2UKGgGR0Bj5wgow22oaAdN6ANoCEdAllEyWiUPhHV9lChoBkdAZA//7zkIX2gHTegDaAhHQJZR8OVgQYl1fZQoaAZHQEd6ShakhzNoB00PAWgIR0CWVvUuL740dX2UKGgGR0BeoK+BYmsvaAdN6ANoCEdAllxLQ5WBBnV9lChoBkdAYkd2Xb/OuGgHTegDaAhHQJZfjiXIEKV1fZQoaAZHQGJAXNs3yZtoB03oA2gIR0CWgCgF5fMOdX2UKGgGR0Bj3cLYwqRVaAdN6ANoCEdAloUVW8yvcXV9lChoBkdAYlPJ6IFeOWgHTegDaAhHQJaIVI/Z/Td1fZQoaAZHQGL5PDP4VRFoB03oA2gIR0CWiqFB6a9cdX2UKGgGR0BgQnxMFlkIaAdN6ANoCEdAlo27N8ma6XV9lChoBkdAY5LhVlwtKGgHTegDaAhHQJaNvaK1og51fZQoaAZHQGBkK508vEloB03oA2gIR0CWkHl5GBnSdX2UKGgGR0Bh14fCAMDwaAdN6ANoCEdAlpIZgXuVo3V9lChoBkdAXhTBk7Omi2gHTegDaAhHQJaUD84xUNt1fZQoaAZHQGMVcFQl8gJoB03oA2gIR0CWlJ/I8yN5dX2UKGgGR0BdzfUz9CNTaAdN6ANoCEdAlpzZB1LamHV9lChoBkdARcmhVU+9rWgHS+ZoCEdAlp7WLcbiqHV9lChoBkdAZB+hmGucMGgHTegDaAhHQJalJCE6DGt1fZQoaAZHQF5iVvddmg9oB03oA2gIR0CWpgV7x/d7dX2UKGgGR0Bj+r5bhWHUaAdN6ANoCEdAlq1lrdnCf3V9lChoBkdAYkK3HaN+9mgHTegDaAhHQJa1H4gzP8h1fZQoaAZHQGODSvTw2EVoB03oA2gIR0CWuXDlHSWrdX2UKGgGR0BfyhXjlxOtaAdN6ANoCEdAltVOT7l7t3V9lChoBkdAWTcYQ8OkL2gHTegDaAhHQJbaOh24d6t1fZQoaAZHQGFdgckt29toB03oA2gIR0CW3VIrvsqsdX2UKGgGR0Bgz/BSDRMOaAdN6ANoCEdAlt+dV7x/eHV9lChoBkdAYcGq0+kgwGgHTegDaAhHQJbjMDGLk0d1fZQoaAZHQGCeAR02caxoB03oA2gIR0CW4zQmeDnOdX2UKGgGR0Bgzh3iaRZEaAdN6ANoCEdAlubt/WlMy3V9lChoBkdAWZlspG4I8mgHTegDaAhHQJbsTytmthd1fZQoaAZHQGHacQI2OyVoB03oA2gIR0CW7SSG8EmqdX2UKGgGR0BgTh9G7SRbaAdN6ANoCEdAlvhkE1VHWnV9lChoBkdAYTxHxSYPXmgHTegDaAhHQJb6pAbADaJ1fZQoaAZHQF8kGYKIBR1oB03oA2gIR0CXAY2FFlTWdX2UKGgGR0BjcGUW2w3YaAdN6ANoCEdAlwJ9znzQNXV9lChoBkdAZF37F85S32gHTegDaAhHQJcJRAIIF/x1fZQoaAZHQFnkrXlKbrloB03oA2gIR0CXD8wnYxtYdX2UKGgGR0Blz1YQrc0taAdN6ANoCEdAlxO+doWYW3V9lChoBkdAKq0S7GvOhWgHTQkBaAhHQJcWL212JSB1fZQoaAZHQGKx5U96kZdoB03oA2gIR0CXNoWKMvRJdX2UKGgGR0BXfdbTtsvaaAdN6ANoCEdAlzwomois4nV9lChoBkdAYXrASnLq2WgHTegDaAhHQJc/qL876pJ1fZQoaAZHQFoTLwWnCO5oB03oA2gIR0CXQjrzoUzsdX2UKGgGR0BbfRkVeruIaAdN6ANoCEdAl0V9diUgS3V9lChoBkdAYn5dadMCcWgHTegDaAhHQJdFfvF3pwF1fZQoaAZHQGGslLFn7HhoB03oA2gIR0CXSIvUSZjQdX2UKGgGR0BfIK86FM7EaAdN6ANoCEdAl0xvYWcjJXV9lChoBkdAX+7pwCKaX2gHTegDaAhHQJdNBhvze411fZQoaAZHQGWGuLaVUuNoB03oA2gIR0CXVfZezD4ydX2UKGgGR0BjyC0Sh8IBaAdN6ANoCEdAl1jY1cdHUnV9lChoBkdAZGYtBfKISGgHTegDaAhHQJdjGfI0ZWJ1fZQoaAZHQE/CBkqc3ERoB00xAWgIR0CXZC0dBBzFdX2UKGgGR0BiwxTGYKIBaAdN6ANoCEdAl2oIuoP07XV9lChoBkdAY8vHCoCMgmgHTegDaAhHQJdvtZs9B8h1fZQoaAZHQGX4jrAxi5NoB03oA2gIR0CXcx6reZXudX2UKGgGR0BhgXQ2MsH0aAdN6ANoCEdAl3UsFyJbdXV9lChoBkdAX0BzV+Zw42gHTegDaAhHQJeOrP0I1Lt1fZQoaAZHQGSDX3QD3dtoB03oA2gIR0CXlQxXGOuJdX2UKGgGR0BjKQXO4XoDaAdN6ANoCEdAl5lIfCAMD3V9lChoBkdAYIWdcSoOx2gHTegDaAhHQJeci3pfQa91fZQoaAZHQGVWOeSSvDBoB03oA2gIR0CXoMbyYoiLdX2UKGgGR0BgnlZ9uxbCaAdN6ANoCEdAl6DJtm+TNnV9lChoBkdAYOCdat9x62gHTegDaAhHQJej6kXUH6d1fZQoaAZHQFmD1EE1VHZoB03oA2gIR0CXp+5QxesxdX2UKGgGR0Bex+p4rz5HaAdN6ANoCEdAl7KVxOtW/HV9lChoBkdAYs1Ux20Re2gHTegDaAhHQJe07yQPqcF1fZQoaAZHQGUxZGax5cFoB03oA2gIR0CXvPvG6wt8dX2UKGgGR0BgPKIWP91maAdN6ANoCEdAl73PYFqzq3V9lChoBkdAY/Gox59mYmgHTegDaAhHQJfDUJUo8ZF1fZQoaAZHQGBZKebutwJoB03oA2gIR0CXyVDSPU8WdX2UKGgGR0BhIxqVQhwEaAdN6ANoCEdAl84L5IpYtHV9lChoBkdAXGYIOYplSWgHTegDaAhHQJfQxhoduHh1fZQoaAZHQGByhQ3xWktoB03oA2gIR0CX7bij+JgtdX2UKGgGR0BhC6T+vQnhaAdN6ANoCEdAl/KxuwX67HV9lChoBkdAYWD54W1twmgHTegDaAhHQJf2DDVH4Gl1fZQoaAZHQGMTzot+TeRoB03oA2gIR0CX+JuPV/c4dX2UKGgGR0BiUesxO+IuaAdN6ANoCEdAl/uYcNpdr3V9lChoBkdAZdSJJoTPB2gHTegDaAhHQJf7mSntOVR1fZQoaAZHQF2kKzAvcrRoB03oA2gIR0CX/oyMkyDadX2UKGgGR0Bh10FY+0PZaAdN6ANoCEdAmAJgT7EYO3V9lChoBkdAYxVs7+1jRWgHTegDaAhHQJgQbqNZNfx1fZQoaAZHQGHleuvECNloB03oA2gIR0CYE45v99+gdX2UKGgGR0BkCM2eg+QmaAdN6ANoCEdAmBtrPt2LYXV9lChoBkdAYoUwV0tAcGgHTegDaAhHQJgcFU6xPft1fZQoaAZHQGMhkQoTfzloB03oA2gIR0CYIFmkWRA9dX2UKGgGR0Bi05nxri2laAdN6ANoCEdAmCVD0cwQDnV9lChoBkdAYHwgYgq3E2gHTegDaAhHQJgoLuc+aBt1fZQoaAZHQGGZJ2t+1BtoB03oA2gIR0CYKe6bONYKdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:596e002936bb2b7a8ae2f01b943c42334efc5d35b502c050babcd3b43e82ddb1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46dfc94294d602745d7bd7c11db50d0408a0362095379b209e1ae1228f9ca821
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (163 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 243.0140969, "std_reward": 28.53719096440896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-01T21:11:51.875925"}
|