update model card README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,96 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
6 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/xlm-roberta-xl
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-xl-lora
|
13 |
+
results: []
|
14 |
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlm-roberta-xl-lora
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.5846
|
24 |
+
- Precision: 0.8927
|
25 |
+
- Recall: 0.9038
|
26 |
+
- F1: 0.8982
|
27 |
+
- Accuracy: 0.9154
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
## Training procedure
|
42 |
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- num_devices: 8
|
52 |
+
- total_train_batch_size: 64
|
53 |
+
- total_eval_batch_size: 64
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_steps: 63
|
57 |
+
- num_epochs: 50
|
58 |
+
- label_smoothing_factor: 0.2
|
59 |
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
64 |
+
| No log | 2.0 | 126 | 3.4068 | 0.2417 | 0.2988 | 0.2672 | 0.2522 |
|
65 |
+
| No log | 4.0 | 252 | 2.5708 | 0.5402 | 0.6641 | 0.5958 | 0.6379 |
|
66 |
+
| No log | 6.0 | 378 | 2.2050 | 0.6278 | 0.7262 | 0.6734 | 0.7242 |
|
67 |
+
| 2.8519 | 8.0 | 504 | 2.0050 | 0.7250 | 0.7922 | 0.7571 | 0.7955 |
|
68 |
+
| 2.8519 | 10.0 | 630 | 1.8831 | 0.8083 | 0.8427 | 0.8252 | 0.8531 |
|
69 |
+
| 2.8519 | 12.0 | 756 | 1.7923 | 0.8453 | 0.8630 | 0.8540 | 0.8756 |
|
70 |
+
| 2.8519 | 14.0 | 882 | 1.7371 | 0.8496 | 0.8693 | 0.8593 | 0.8843 |
|
71 |
+
| 1.8053 | 16.0 | 1008 | 1.7031 | 0.8529 | 0.8753 | 0.8640 | 0.8886 |
|
72 |
+
| 1.8053 | 18.0 | 1134 | 1.6692 | 0.8691 | 0.8812 | 0.8751 | 0.8969 |
|
73 |
+
| 1.8053 | 20.0 | 1260 | 1.6555 | 0.8699 | 0.8856 | 0.8777 | 0.8991 |
|
74 |
+
| 1.8053 | 22.0 | 1386 | 1.6359 | 0.8824 | 0.8903 | 0.8863 | 0.9054 |
|
75 |
+
| 1.6089 | 24.0 | 1512 | 1.6303 | 0.8756 | 0.8919 | 0.8837 | 0.9043 |
|
76 |
+
| 1.6089 | 26.0 | 1638 | 1.6169 | 0.8806 | 0.8935 | 0.8870 | 0.9063 |
|
77 |
+
| 1.6089 | 28.0 | 1764 | 1.6105 | 0.8876 | 0.8952 | 0.8914 | 0.9088 |
|
78 |
+
| 1.6089 | 30.0 | 1890 | 1.6067 | 0.8861 | 0.8981 | 0.8920 | 0.9089 |
|
79 |
+
| 1.5373 | 32.0 | 2016 | 1.5998 | 0.8870 | 0.8989 | 0.8929 | 0.9109 |
|
80 |
+
| 1.5373 | 34.0 | 2142 | 1.5967 | 0.8900 | 0.8996 | 0.8948 | 0.9121 |
|
81 |
+
| 1.5373 | 36.0 | 2268 | 1.5939 | 0.8912 | 0.9015 | 0.8964 | 0.9137 |
|
82 |
+
| 1.5373 | 38.0 | 2394 | 1.5922 | 0.8914 | 0.9014 | 0.8964 | 0.9135 |
|
83 |
+
| 1.501 | 40.0 | 2520 | 1.5894 | 0.8920 | 0.9021 | 0.8970 | 0.9142 |
|
84 |
+
| 1.501 | 42.0 | 2646 | 1.5874 | 0.8900 | 0.9029 | 0.8964 | 0.9139 |
|
85 |
+
| 1.501 | 44.0 | 2772 | 1.5865 | 0.8930 | 0.9043 | 0.8986 | 0.9155 |
|
86 |
+
| 1.501 | 46.0 | 2898 | 1.5866 | 0.8906 | 0.9036 | 0.8971 | 0.9146 |
|
87 |
+
| 1.4812 | 48.0 | 3024 | 1.5853 | 0.8907 | 0.9033 | 0.8970 | 0.9148 |
|
88 |
+
| 1.4812 | 50.0 | 3150 | 1.5846 | 0.8927 | 0.9038 | 0.8982 | 0.9154 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
|
93 |
+
- Transformers 4.31.0
|
94 |
+
- Pytorch 2.1.0
|
95 |
+
- Datasets 2.14.5
|
96 |
+
- Tokenizers 0.13.3
|