jamesngai commited on
Commit
70aeb7a
1 Parent(s): b17b822

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -3
README.md CHANGED
@@ -1,9 +1,96 @@
1
  ---
2
- library_name: peft
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ## Training procedure
5
 
6
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- - PEFT 0.5.0
 
 
 
 
1
  ---
2
+ license: mit
3
+ base_model: facebook/xlm-roberta-xl
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: xlm-roberta-xl-lora
13
+ results: []
14
  ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xlm-roberta-xl-lora
20
+
21
+ This model is a fine-tuned version of [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.5846
24
+ - Precision: 0.8927
25
+ - Recall: 0.9038
26
+ - F1: 0.8982
27
+ - Accuracy: 0.9154
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
  ## Training procedure
42
 
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - num_devices: 8
52
+ - total_train_batch_size: 64
53
+ - total_eval_batch_size: 64
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 63
57
+ - num_epochs: 50
58
+ - label_smoothing_factor: 0.2
59
 
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
63
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
64
+ | No log | 2.0 | 126 | 3.4068 | 0.2417 | 0.2988 | 0.2672 | 0.2522 |
65
+ | No log | 4.0 | 252 | 2.5708 | 0.5402 | 0.6641 | 0.5958 | 0.6379 |
66
+ | No log | 6.0 | 378 | 2.2050 | 0.6278 | 0.7262 | 0.6734 | 0.7242 |
67
+ | 2.8519 | 8.0 | 504 | 2.0050 | 0.7250 | 0.7922 | 0.7571 | 0.7955 |
68
+ | 2.8519 | 10.0 | 630 | 1.8831 | 0.8083 | 0.8427 | 0.8252 | 0.8531 |
69
+ | 2.8519 | 12.0 | 756 | 1.7923 | 0.8453 | 0.8630 | 0.8540 | 0.8756 |
70
+ | 2.8519 | 14.0 | 882 | 1.7371 | 0.8496 | 0.8693 | 0.8593 | 0.8843 |
71
+ | 1.8053 | 16.0 | 1008 | 1.7031 | 0.8529 | 0.8753 | 0.8640 | 0.8886 |
72
+ | 1.8053 | 18.0 | 1134 | 1.6692 | 0.8691 | 0.8812 | 0.8751 | 0.8969 |
73
+ | 1.8053 | 20.0 | 1260 | 1.6555 | 0.8699 | 0.8856 | 0.8777 | 0.8991 |
74
+ | 1.8053 | 22.0 | 1386 | 1.6359 | 0.8824 | 0.8903 | 0.8863 | 0.9054 |
75
+ | 1.6089 | 24.0 | 1512 | 1.6303 | 0.8756 | 0.8919 | 0.8837 | 0.9043 |
76
+ | 1.6089 | 26.0 | 1638 | 1.6169 | 0.8806 | 0.8935 | 0.8870 | 0.9063 |
77
+ | 1.6089 | 28.0 | 1764 | 1.6105 | 0.8876 | 0.8952 | 0.8914 | 0.9088 |
78
+ | 1.6089 | 30.0 | 1890 | 1.6067 | 0.8861 | 0.8981 | 0.8920 | 0.9089 |
79
+ | 1.5373 | 32.0 | 2016 | 1.5998 | 0.8870 | 0.8989 | 0.8929 | 0.9109 |
80
+ | 1.5373 | 34.0 | 2142 | 1.5967 | 0.8900 | 0.8996 | 0.8948 | 0.9121 |
81
+ | 1.5373 | 36.0 | 2268 | 1.5939 | 0.8912 | 0.9015 | 0.8964 | 0.9137 |
82
+ | 1.5373 | 38.0 | 2394 | 1.5922 | 0.8914 | 0.9014 | 0.8964 | 0.9135 |
83
+ | 1.501 | 40.0 | 2520 | 1.5894 | 0.8920 | 0.9021 | 0.8970 | 0.9142 |
84
+ | 1.501 | 42.0 | 2646 | 1.5874 | 0.8900 | 0.9029 | 0.8964 | 0.9139 |
85
+ | 1.501 | 44.0 | 2772 | 1.5865 | 0.8930 | 0.9043 | 0.8986 | 0.9155 |
86
+ | 1.501 | 46.0 | 2898 | 1.5866 | 0.8906 | 0.9036 | 0.8971 | 0.9146 |
87
+ | 1.4812 | 48.0 | 3024 | 1.5853 | 0.8907 | 0.9033 | 0.8970 | 0.9148 |
88
+ | 1.4812 | 50.0 | 3150 | 1.5846 | 0.8927 | 0.9038 | 0.8982 | 0.9154 |
89
+
90
+
91
+ ### Framework versions
92
 
93
+ - Transformers 4.31.0
94
+ - Pytorch 2.1.0
95
+ - Datasets 2.14.5
96
+ - Tokenizers 0.13.3