jamesgpt1 commited on
Commit
e617388
1 Parent(s): e4dea1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2632 -1
README.md CHANGED
@@ -1,3 +1,2634 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
1
  ---
2
+ license: apache-2.0
3
+ pipeline_tag: sentence-similarity
4
+ inference: false
5
+ tags:
6
+ - sentence-transformers
7
+ - feature-extraction
8
+ - sentence-similarity
9
+ - mteb
10
+ language: en
11
+ datasets:
12
+ - s2orc
13
+ - flax-sentence-embeddings/stackexchange_title_body_jsonl
14
+ - flax-sentence-embeddings/stackexchange_titlebody_best_voted_answer_jsonl
15
+ - flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl
16
+ - flax-sentence-embeddings/stackexchange_titlebody_best_and_down_voted_answer_jsonl
17
+ - sentence-transformers/reddit-title-body
18
+ - msmarco
19
+ - gooaq
20
+ - yahoo_answers_topics
21
+ - code_search_net
22
+ - search_qa
23
+ - eli5
24
+ - snli
25
+ - multi_nli
26
+ - wikihow
27
+ - natural_questions
28
+ - trivia_qa
29
+ - embedding-data/sentence-compression
30
+ - embedding-data/flickr30k-captions
31
+ - embedding-data/altlex
32
+ - embedding-data/simple-wiki
33
+ - embedding-data/QQP
34
+ - embedding-data/SPECTER
35
+ - embedding-data/PAQ_pairs
36
+ - embedding-data/WikiAnswers
37
+ - sentence-transformers/embedding-training-data
38
+ model-index:
39
+ - name: lodestone-base-4096-v1
40
+ results:
41
+ - task:
42
+ type: Classification
43
+ dataset:
44
+ type: mteb/amazon_counterfactual
45
+ name: MTEB AmazonCounterfactualClassification (en)
46
+ config: en
47
+ split: test
48
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
49
+ metrics:
50
+ - type: accuracy
51
+ value: 69.7313432835821
52
+ - type: ap
53
+ value: 31.618259511417733
54
+ - type: f1
55
+ value: 63.30313825394228
56
+ - task:
57
+ type: Classification
58
+ dataset:
59
+ type: mteb/amazon_polarity
60
+ name: MTEB AmazonPolarityClassification
61
+ config: default
62
+ split: test
63
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
64
+ metrics:
65
+ - type: accuracy
66
+ value: 86.89837499999999
67
+ - type: ap
68
+ value: 82.39500885672128
69
+ - type: f1
70
+ value: 86.87317947399657
71
+ - task:
72
+ type: Classification
73
+ dataset:
74
+ type: mteb/amazon_reviews_multi
75
+ name: MTEB AmazonReviewsClassification (en)
76
+ config: en
77
+ split: test
78
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
79
+ metrics:
80
+ - type: accuracy
81
+ value: 44.05
82
+ - type: f1
83
+ value: 42.67624383248947
84
+ - task:
85
+ type: Retrieval
86
+ dataset:
87
+ type: arguana
88
+ name: MTEB ArguAna
89
+ config: default
90
+ split: test
91
+ revision: None
92
+ metrics:
93
+ - type: map_at_1
94
+ value: 26.173999999999996
95
+ - type: map_at_10
96
+ value: 40.976
97
+ - type: map_at_100
98
+ value: 42.067
99
+ - type: map_at_1000
100
+ value: 42.075
101
+ - type: map_at_3
102
+ value: 35.917
103
+ - type: map_at_5
104
+ value: 38.656
105
+ - type: mrr_at_1
106
+ value: 26.814
107
+ - type: mrr_at_10
108
+ value: 41.252
109
+ - type: mrr_at_100
110
+ value: 42.337
111
+ - type: mrr_at_1000
112
+ value: 42.345
113
+ - type: mrr_at_3
114
+ value: 36.226
115
+ - type: mrr_at_5
116
+ value: 38.914
117
+ - type: ndcg_at_1
118
+ value: 26.173999999999996
119
+ - type: ndcg_at_10
120
+ value: 49.819
121
+ - type: ndcg_at_100
122
+ value: 54.403999999999996
123
+ - type: ndcg_at_1000
124
+ value: 54.59
125
+ - type: ndcg_at_3
126
+ value: 39.231
127
+ - type: ndcg_at_5
128
+ value: 44.189
129
+ - type: precision_at_1
130
+ value: 26.173999999999996
131
+ - type: precision_at_10
132
+ value: 7.838000000000001
133
+ - type: precision_at_100
134
+ value: 0.9820000000000001
135
+ - type: precision_at_1000
136
+ value: 0.1
137
+ - type: precision_at_3
138
+ value: 16.287
139
+ - type: precision_at_5
140
+ value: 12.191
141
+ - type: recall_at_1
142
+ value: 26.173999999999996
143
+ - type: recall_at_10
144
+ value: 78.378
145
+ - type: recall_at_100
146
+ value: 98.222
147
+ - type: recall_at_1000
148
+ value: 99.644
149
+ - type: recall_at_3
150
+ value: 48.862
151
+ - type: recall_at_5
152
+ value: 60.953
153
+ - task:
154
+ type: Clustering
155
+ dataset:
156
+ type: mteb/arxiv-clustering-p2p
157
+ name: MTEB ArxivClusteringP2P
158
+ config: default
159
+ split: test
160
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
161
+ metrics:
162
+ - type: v_measure
163
+ value: 42.31689035788179
164
+ - task:
165
+ type: Clustering
166
+ dataset:
167
+ type: mteb/arxiv-clustering-s2s
168
+ name: MTEB ArxivClusteringS2S
169
+ config: default
170
+ split: test
171
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
172
+ metrics:
173
+ - type: v_measure
174
+ value: 31.280245136660984
175
+ - task:
176
+ type: Reranking
177
+ dataset:
178
+ type: mteb/askubuntudupquestions-reranking
179
+ name: MTEB AskUbuntuDupQuestions
180
+ config: default
181
+ split: test
182
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
183
+ metrics:
184
+ - type: map
185
+ value: 58.79109720839415
186
+ - type: mrr
187
+ value: 71.79615705931495
188
+ - task:
189
+ type: STS
190
+ dataset:
191
+ type: mteb/biosses-sts
192
+ name: MTEB BIOSSES
193
+ config: default
194
+ split: test
195
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
196
+ metrics:
197
+ - type: cos_sim_pearson
198
+ value: 76.44918756608115
199
+ - type: cos_sim_spearman
200
+ value: 70.86607256286257
201
+ - type: euclidean_pearson
202
+ value: 74.12154678100815
203
+ - type: euclidean_spearman
204
+ value: 70.86607256286257
205
+ - type: manhattan_pearson
206
+ value: 74.0078626964417
207
+ - type: manhattan_spearman
208
+ value: 70.68353828321327
209
+ - task:
210
+ type: Classification
211
+ dataset:
212
+ type: mteb/banking77
213
+ name: MTEB Banking77Classification
214
+ config: default
215
+ split: test
216
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
217
+ metrics:
218
+ - type: accuracy
219
+ value: 75.40584415584415
220
+ - type: f1
221
+ value: 74.29514617572676
222
+ - task:
223
+ type: Clustering
224
+ dataset:
225
+ type: mteb/biorxiv-clustering-p2p
226
+ name: MTEB BiorxivClusteringP2P
227
+ config: default
228
+ split: test
229
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
230
+ metrics:
231
+ - type: v_measure
232
+ value: 37.41860080664014
233
+ - task:
234
+ type: Clustering
235
+ dataset:
236
+ type: mteb/biorxiv-clustering-s2s
237
+ name: MTEB BiorxivClusteringS2S
238
+ config: default
239
+ split: test
240
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
241
+ metrics:
242
+ - type: v_measure
243
+ value: 29.319217023090705
244
+ - task:
245
+ type: Retrieval
246
+ dataset:
247
+ type: BeIR/cqadupstack
248
+ name: MTEB CQADupstackAndroidRetrieval
249
+ config: default
250
+ split: test
251
+ revision: None
252
+ metrics:
253
+ - type: map_at_1
254
+ value: 26.595000000000002
255
+ - type: map_at_10
256
+ value: 36.556
257
+ - type: map_at_100
258
+ value: 37.984
259
+ - type: map_at_1000
260
+ value: 38.134
261
+ - type: map_at_3
262
+ value: 33.417
263
+ - type: map_at_5
264
+ value: 35.160000000000004
265
+ - type: mrr_at_1
266
+ value: 32.761
267
+ - type: mrr_at_10
268
+ value: 41.799
269
+ - type: mrr_at_100
270
+ value: 42.526
271
+ - type: mrr_at_1000
272
+ value: 42.582
273
+ - type: mrr_at_3
274
+ value: 39.39
275
+ - type: mrr_at_5
276
+ value: 40.727000000000004
277
+ - type: ndcg_at_1
278
+ value: 32.761
279
+ - type: ndcg_at_10
280
+ value: 42.549
281
+ - type: ndcg_at_100
282
+ value: 47.915
283
+ - type: ndcg_at_1000
284
+ value: 50.475
285
+ - type: ndcg_at_3
286
+ value: 37.93
287
+ - type: ndcg_at_5
288
+ value: 39.939
289
+ - type: precision_at_1
290
+ value: 32.761
291
+ - type: precision_at_10
292
+ value: 8.312
293
+ - type: precision_at_100
294
+ value: 1.403
295
+ - type: precision_at_1000
296
+ value: 0.197
297
+ - type: precision_at_3
298
+ value: 18.741
299
+ - type: precision_at_5
300
+ value: 13.447999999999999
301
+ - type: recall_at_1
302
+ value: 26.595000000000002
303
+ - type: recall_at_10
304
+ value: 54.332
305
+ - type: recall_at_100
306
+ value: 76.936
307
+ - type: recall_at_1000
308
+ value: 93.914
309
+ - type: recall_at_3
310
+ value: 40.666000000000004
311
+ - type: recall_at_5
312
+ value: 46.513
313
+ - task:
314
+ type: Retrieval
315
+ dataset:
316
+ type: BeIR/cqadupstack
317
+ name: MTEB CQADupstackEnglishRetrieval
318
+ config: default
319
+ split: test
320
+ revision: None
321
+ metrics:
322
+ - type: map_at_1
323
+ value: 22.528000000000002
324
+ - type: map_at_10
325
+ value: 30.751
326
+ - type: map_at_100
327
+ value: 31.855
328
+ - type: map_at_1000
329
+ value: 31.972
330
+ - type: map_at_3
331
+ value: 28.465
332
+ - type: map_at_5
333
+ value: 29.738
334
+ - type: mrr_at_1
335
+ value: 28.662
336
+ - type: mrr_at_10
337
+ value: 35.912
338
+ - type: mrr_at_100
339
+ value: 36.726
340
+ - type: mrr_at_1000
341
+ value: 36.777
342
+ - type: mrr_at_3
343
+ value: 34.013
344
+ - type: mrr_at_5
345
+ value: 35.156
346
+ - type: ndcg_at_1
347
+ value: 28.662
348
+ - type: ndcg_at_10
349
+ value: 35.452
350
+ - type: ndcg_at_100
351
+ value: 40.1
352
+ - type: ndcg_at_1000
353
+ value: 42.323
354
+ - type: ndcg_at_3
355
+ value: 32.112
356
+ - type: ndcg_at_5
357
+ value: 33.638
358
+ - type: precision_at_1
359
+ value: 28.662
360
+ - type: precision_at_10
361
+ value: 6.688
362
+ - type: precision_at_100
363
+ value: 1.13
364
+ - type: precision_at_1000
365
+ value: 0.16
366
+ - type: precision_at_3
367
+ value: 15.562999999999999
368
+ - type: precision_at_5
369
+ value: 11.019
370
+ - type: recall_at_1
371
+ value: 22.528000000000002
372
+ - type: recall_at_10
373
+ value: 43.748
374
+ - type: recall_at_100
375
+ value: 64.235
376
+ - type: recall_at_1000
377
+ value: 78.609
378
+ - type: recall_at_3
379
+ value: 33.937
380
+ - type: recall_at_5
381
+ value: 38.234
382
+ - task:
383
+ type: Retrieval
384
+ dataset:
385
+ type: BeIR/cqadupstack
386
+ name: MTEB CQADupstackGamingRetrieval
387
+ config: default
388
+ split: test
389
+ revision: None
390
+ metrics:
391
+ - type: map_at_1
392
+ value: 33.117999999999995
393
+ - type: map_at_10
394
+ value: 44.339
395
+ - type: map_at_100
396
+ value: 45.367000000000004
397
+ - type: map_at_1000
398
+ value: 45.437
399
+ - type: map_at_3
400
+ value: 41.195
401
+ - type: map_at_5
402
+ value: 42.922
403
+ - type: mrr_at_1
404
+ value: 38.37
405
+ - type: mrr_at_10
406
+ value: 47.786
407
+ - type: mrr_at_100
408
+ value: 48.522
409
+ - type: mrr_at_1000
410
+ value: 48.567
411
+ - type: mrr_at_3
412
+ value: 45.371
413
+ - type: mrr_at_5
414
+ value: 46.857
415
+ - type: ndcg_at_1
416
+ value: 38.37
417
+ - type: ndcg_at_10
418
+ value: 50.019999999999996
419
+ - type: ndcg_at_100
420
+ value: 54.36299999999999
421
+ - type: ndcg_at_1000
422
+ value: 55.897
423
+ - type: ndcg_at_3
424
+ value: 44.733000000000004
425
+ - type: ndcg_at_5
426
+ value: 47.292
427
+ - type: precision_at_1
428
+ value: 38.37
429
+ - type: precision_at_10
430
+ value: 8.288
431
+ - type: precision_at_100
432
+ value: 1.139
433
+ - type: precision_at_1000
434
+ value: 0.132
435
+ - type: precision_at_3
436
+ value: 20.293
437
+ - type: precision_at_5
438
+ value: 14.107
439
+ - type: recall_at_1
440
+ value: 33.117999999999995
441
+ - type: recall_at_10
442
+ value: 63.451
443
+ - type: recall_at_100
444
+ value: 82.767
445
+ - type: recall_at_1000
446
+ value: 93.786
447
+ - type: recall_at_3
448
+ value: 48.964999999999996
449
+ - type: recall_at_5
450
+ value: 55.358
451
+ - task:
452
+ type: Retrieval
453
+ dataset:
454
+ type: BeIR/cqadupstack
455
+ name: MTEB CQADupstackGisRetrieval
456
+ config: default
457
+ split: test
458
+ revision: None
459
+ metrics:
460
+ - type: map_at_1
461
+ value: 16.028000000000002
462
+ - type: map_at_10
463
+ value: 23.186999999999998
464
+ - type: map_at_100
465
+ value: 24.236
466
+ - type: map_at_1000
467
+ value: 24.337
468
+ - type: map_at_3
469
+ value: 20.816000000000003
470
+ - type: map_at_5
471
+ value: 22.311
472
+ - type: mrr_at_1
473
+ value: 17.514
474
+ - type: mrr_at_10
475
+ value: 24.84
476
+ - type: mrr_at_100
477
+ value: 25.838
478
+ - type: mrr_at_1000
479
+ value: 25.924999999999997
480
+ - type: mrr_at_3
481
+ value: 22.542
482
+ - type: mrr_at_5
483
+ value: 24.04
484
+ - type: ndcg_at_1
485
+ value: 17.514
486
+ - type: ndcg_at_10
487
+ value: 27.391
488
+ - type: ndcg_at_100
489
+ value: 32.684999999999995
490
+ - type: ndcg_at_1000
491
+ value: 35.367
492
+ - type: ndcg_at_3
493
+ value: 22.820999999999998
494
+ - type: ndcg_at_5
495
+ value: 25.380999999999997
496
+ - type: precision_at_1
497
+ value: 17.514
498
+ - type: precision_at_10
499
+ value: 4.463
500
+ - type: precision_at_100
501
+ value: 0.745
502
+ - type: precision_at_1000
503
+ value: 0.101
504
+ - type: precision_at_3
505
+ value: 10.019
506
+ - type: precision_at_5
507
+ value: 7.457999999999999
508
+ - type: recall_at_1
509
+ value: 16.028000000000002
510
+ - type: recall_at_10
511
+ value: 38.81
512
+ - type: recall_at_100
513
+ value: 63.295
514
+ - type: recall_at_1000
515
+ value: 83.762
516
+ - type: recall_at_3
517
+ value: 26.604
518
+ - type: recall_at_5
519
+ value: 32.727000000000004
520
+ - task:
521
+ type: Retrieval
522
+ dataset:
523
+ type: BeIR/cqadupstack
524
+ name: MTEB CQADupstackMathematicaRetrieval
525
+ config: default
526
+ split: test
527
+ revision: None
528
+ metrics:
529
+ - type: map_at_1
530
+ value: 11.962
531
+ - type: map_at_10
532
+ value: 17.218
533
+ - type: map_at_100
534
+ value: 18.321
535
+ - type: map_at_1000
536
+ value: 18.455
537
+ - type: map_at_3
538
+ value: 15.287999999999998
539
+ - type: map_at_5
540
+ value: 16.417
541
+ - type: mrr_at_1
542
+ value: 14.677000000000001
543
+ - type: mrr_at_10
544
+ value: 20.381
545
+ - type: mrr_at_100
546
+ value: 21.471999999999998
547
+ - type: mrr_at_1000
548
+ value: 21.566
549
+ - type: mrr_at_3
550
+ value: 18.448999999999998
551
+ - type: mrr_at_5
552
+ value: 19.587
553
+ - type: ndcg_at_1
554
+ value: 14.677000000000001
555
+ - type: ndcg_at_10
556
+ value: 20.86
557
+ - type: ndcg_at_100
558
+ value: 26.519
559
+ - type: ndcg_at_1000
560
+ value: 30.020000000000003
561
+ - type: ndcg_at_3
562
+ value: 17.208000000000002
563
+ - type: ndcg_at_5
564
+ value: 19.037000000000003
565
+ - type: precision_at_1
566
+ value: 14.677000000000001
567
+ - type: precision_at_10
568
+ value: 3.856
569
+ - type: precision_at_100
570
+ value: 0.7889999999999999
571
+ - type: precision_at_1000
572
+ value: 0.124
573
+ - type: precision_at_3
574
+ value: 8.043
575
+ - type: precision_at_5
576
+ value: 6.069999999999999
577
+ - type: recall_at_1
578
+ value: 11.962
579
+ - type: recall_at_10
580
+ value: 28.994999999999997
581
+ - type: recall_at_100
582
+ value: 54.071999999999996
583
+ - type: recall_at_1000
584
+ value: 79.309
585
+ - type: recall_at_3
586
+ value: 19.134999999999998
587
+ - type: recall_at_5
588
+ value: 23.727999999999998
589
+ - task:
590
+ type: Retrieval
591
+ dataset:
592
+ type: BeIR/cqadupstack
593
+ name: MTEB CQADupstackPhysicsRetrieval
594
+ config: default
595
+ split: test
596
+ revision: None
597
+ metrics:
598
+ - type: map_at_1
599
+ value: 22.764
600
+ - type: map_at_10
601
+ value: 31.744
602
+ - type: map_at_100
603
+ value: 33.037
604
+ - type: map_at_1000
605
+ value: 33.156
606
+ - type: map_at_3
607
+ value: 29.015
608
+ - type: map_at_5
609
+ value: 30.434
610
+ - type: mrr_at_1
611
+ value: 28.296
612
+ - type: mrr_at_10
613
+ value: 37.03
614
+ - type: mrr_at_100
615
+ value: 37.902
616
+ - type: mrr_at_1000
617
+ value: 37.966
618
+ - type: mrr_at_3
619
+ value: 34.568
620
+ - type: mrr_at_5
621
+ value: 35.786
622
+ - type: ndcg_at_1
623
+ value: 28.296
624
+ - type: ndcg_at_10
625
+ value: 37.289
626
+ - type: ndcg_at_100
627
+ value: 42.787
628
+ - type: ndcg_at_1000
629
+ value: 45.382
630
+ - type: ndcg_at_3
631
+ value: 32.598
632
+ - type: ndcg_at_5
633
+ value: 34.521
634
+ - type: precision_at_1
635
+ value: 28.296
636
+ - type: precision_at_10
637
+ value: 6.901
638
+ - type: precision_at_100
639
+ value: 1.135
640
+ - type: precision_at_1000
641
+ value: 0.152
642
+ - type: precision_at_3
643
+ value: 15.367
644
+ - type: precision_at_5
645
+ value: 11.03
646
+ - type: recall_at_1
647
+ value: 22.764
648
+ - type: recall_at_10
649
+ value: 48.807
650
+ - type: recall_at_100
651
+ value: 71.859
652
+ - type: recall_at_1000
653
+ value: 89.606
654
+ - type: recall_at_3
655
+ value: 35.594
656
+ - type: recall_at_5
657
+ value: 40.541
658
+ - task:
659
+ type: Retrieval
660
+ dataset:
661
+ type: BeIR/cqadupstack
662
+ name: MTEB CQADupstackProgrammersRetrieval
663
+ config: default
664
+ split: test
665
+ revision: None
666
+ metrics:
667
+ - type: map_at_1
668
+ value: 19.742
669
+ - type: map_at_10
670
+ value: 27.741
671
+ - type: map_at_100
672
+ value: 29.323
673
+ - type: map_at_1000
674
+ value: 29.438
675
+ - type: map_at_3
676
+ value: 25.217
677
+ - type: map_at_5
678
+ value: 26.583000000000002
679
+ - type: mrr_at_1
680
+ value: 24.657999999999998
681
+ - type: mrr_at_10
682
+ value: 32.407000000000004
683
+ - type: mrr_at_100
684
+ value: 33.631
685
+ - type: mrr_at_1000
686
+ value: 33.686
687
+ - type: mrr_at_3
688
+ value: 30.194
689
+ - type: mrr_at_5
690
+ value: 31.444
691
+ - type: ndcg_at_1
692
+ value: 24.657999999999998
693
+ - type: ndcg_at_10
694
+ value: 32.614
695
+ - type: ndcg_at_100
696
+ value: 39.61
697
+ - type: ndcg_at_1000
698
+ value: 42.114000000000004
699
+ - type: ndcg_at_3
700
+ value: 28.516000000000002
701
+ - type: ndcg_at_5
702
+ value: 30.274
703
+ - type: precision_at_1
704
+ value: 24.657999999999998
705
+ - type: precision_at_10
706
+ value: 6.176
707
+ - type: precision_at_100
708
+ value: 1.1400000000000001
709
+ - type: precision_at_1000
710
+ value: 0.155
711
+ - type: precision_at_3
712
+ value: 13.927
713
+ - type: precision_at_5
714
+ value: 9.954
715
+ - type: recall_at_1
716
+ value: 19.742
717
+ - type: recall_at_10
718
+ value: 42.427
719
+ - type: recall_at_100
720
+ value: 72.687
721
+ - type: recall_at_1000
722
+ value: 89.89
723
+ - type: recall_at_3
724
+ value: 30.781
725
+ - type: recall_at_5
726
+ value: 35.606
727
+ - task:
728
+ type: Retrieval
729
+ dataset:
730
+ type: BeIR/cqadupstack
731
+ name: MTEB CQADupstackRetrieval
732
+ config: default
733
+ split: test
734
+ revision: None
735
+ metrics:
736
+ - type: map_at_1
737
+ value: 19.72608333333333
738
+ - type: map_at_10
739
+ value: 27.165333333333336
740
+ - type: map_at_100
741
+ value: 28.292499999999997
742
+ - type: map_at_1000
743
+ value: 28.416333333333327
744
+ - type: map_at_3
745
+ value: 24.783833333333334
746
+ - type: map_at_5
747
+ value: 26.101750000000003
748
+ - type: mrr_at_1
749
+ value: 23.721500000000002
750
+ - type: mrr_at_10
751
+ value: 30.853333333333328
752
+ - type: mrr_at_100
753
+ value: 31.741750000000003
754
+ - type: mrr_at_1000
755
+ value: 31.812999999999995
756
+ - type: mrr_at_3
757
+ value: 28.732249999999997
758
+ - type: mrr_at_5
759
+ value: 29.945166666666665
760
+ - type: ndcg_at_1
761
+ value: 23.721500000000002
762
+ - type: ndcg_at_10
763
+ value: 31.74883333333333
764
+ - type: ndcg_at_100
765
+ value: 36.883583333333334
766
+ - type: ndcg_at_1000
767
+ value: 39.6145
768
+ - type: ndcg_at_3
769
+ value: 27.639583333333334
770
+ - type: ndcg_at_5
771
+ value: 29.543666666666667
772
+ - type: precision_at_1
773
+ value: 23.721500000000002
774
+ - type: precision_at_10
775
+ value: 5.709083333333333
776
+ - type: precision_at_100
777
+ value: 0.9859166666666666
778
+ - type: precision_at_1000
779
+ value: 0.1413333333333333
780
+ - type: precision_at_3
781
+ value: 12.85683333333333
782
+ - type: precision_at_5
783
+ value: 9.258166666666668
784
+ - type: recall_at_1
785
+ value: 19.72608333333333
786
+ - type: recall_at_10
787
+ value: 41.73583333333334
788
+ - type: recall_at_100
789
+ value: 64.66566666666668
790
+ - type: recall_at_1000
791
+ value: 84.09833333333336
792
+ - type: recall_at_3
793
+ value: 30.223083333333328
794
+ - type: recall_at_5
795
+ value: 35.153083333333335
796
+ - task:
797
+ type: Retrieval
798
+ dataset:
799
+ type: BeIR/cqadupstack
800
+ name: MTEB CQADupstackStatsRetrieval
801
+ config: default
802
+ split: test
803
+ revision: None
804
+ metrics:
805
+ - type: map_at_1
806
+ value: 17.582
807
+ - type: map_at_10
808
+ value: 22.803
809
+ - type: map_at_100
810
+ value: 23.503
811
+ - type: map_at_1000
812
+ value: 23.599999999999998
813
+ - type: map_at_3
814
+ value: 21.375
815
+ - type: map_at_5
816
+ value: 22.052
817
+ - type: mrr_at_1
818
+ value: 20.399
819
+ - type: mrr_at_10
820
+ value: 25.369999999999997
821
+ - type: mrr_at_100
822
+ value: 26.016000000000002
823
+ - type: mrr_at_1000
824
+ value: 26.090999999999998
825
+ - type: mrr_at_3
826
+ value: 23.952
827
+ - type: mrr_at_5
828
+ value: 24.619
829
+ - type: ndcg_at_1
830
+ value: 20.399
831
+ - type: ndcg_at_10
832
+ value: 25.964
833
+ - type: ndcg_at_100
834
+ value: 29.607
835
+ - type: ndcg_at_1000
836
+ value: 32.349
837
+ - type: ndcg_at_3
838
+ value: 23.177
839
+ - type: ndcg_at_5
840
+ value: 24.276
841
+ - type: precision_at_1
842
+ value: 20.399
843
+ - type: precision_at_10
844
+ value: 4.018
845
+ - type: precision_at_100
846
+ value: 0.629
847
+ - type: precision_at_1000
848
+ value: 0.093
849
+ - type: precision_at_3
850
+ value: 9.969
851
+ - type: precision_at_5
852
+ value: 6.748
853
+ - type: recall_at_1
854
+ value: 17.582
855
+ - type: recall_at_10
856
+ value: 33.35
857
+ - type: recall_at_100
858
+ value: 50.219
859
+ - type: recall_at_1000
860
+ value: 71.06099999999999
861
+ - type: recall_at_3
862
+ value: 25.619999999999997
863
+ - type: recall_at_5
864
+ value: 28.291
865
+ - task:
866
+ type: Retrieval
867
+ dataset:
868
+ type: BeIR/cqadupstack
869
+ name: MTEB CQADupstackTexRetrieval
870
+ config: default
871
+ split: test
872
+ revision: None
873
+ metrics:
874
+ - type: map_at_1
875
+ value: 11.071
876
+ - type: map_at_10
877
+ value: 16.201999999999998
878
+ - type: map_at_100
879
+ value: 17.112
880
+ - type: map_at_1000
881
+ value: 17.238
882
+ - type: map_at_3
883
+ value: 14.508
884
+ - type: map_at_5
885
+ value: 15.440999999999999
886
+ - type: mrr_at_1
887
+ value: 13.833
888
+ - type: mrr_at_10
889
+ value: 19.235
890
+ - type: mrr_at_100
891
+ value: 20.108999999999998
892
+ - type: mrr_at_1000
893
+ value: 20.196
894
+ - type: mrr_at_3
895
+ value: 17.515
896
+ - type: mrr_at_5
897
+ value: 18.505
898
+ - type: ndcg_at_1
899
+ value: 13.833
900
+ - type: ndcg_at_10
901
+ value: 19.643
902
+ - type: ndcg_at_100
903
+ value: 24.298000000000002
904
+ - type: ndcg_at_1000
905
+ value: 27.614
906
+ - type: ndcg_at_3
907
+ value: 16.528000000000002
908
+ - type: ndcg_at_5
909
+ value: 17.991
910
+ - type: precision_at_1
911
+ value: 13.833
912
+ - type: precision_at_10
913
+ value: 3.6990000000000003
914
+ - type: precision_at_100
915
+ value: 0.713
916
+ - type: precision_at_1000
917
+ value: 0.116
918
+ - type: precision_at_3
919
+ value: 7.9030000000000005
920
+ - type: precision_at_5
921
+ value: 5.891
922
+ - type: recall_at_1
923
+ value: 11.071
924
+ - type: recall_at_10
925
+ value: 27.019
926
+ - type: recall_at_100
927
+ value: 48.404
928
+ - type: recall_at_1000
929
+ value: 72.641
930
+ - type: recall_at_3
931
+ value: 18.336
932
+ - type: recall_at_5
933
+ value: 21.991
934
+ - task:
935
+ type: Retrieval
936
+ dataset:
937
+ type: BeIR/cqadupstack
938
+ name: MTEB CQADupstackUnixRetrieval
939
+ config: default
940
+ split: test
941
+ revision: None
942
+ metrics:
943
+ - type: map_at_1
944
+ value: 18.573
945
+ - type: map_at_10
946
+ value: 25.008999999999997
947
+ - type: map_at_100
948
+ value: 26.015
949
+ - type: map_at_1000
950
+ value: 26.137
951
+ - type: map_at_3
952
+ value: 22.798
953
+ - type: map_at_5
954
+ value: 24.092
955
+ - type: mrr_at_1
956
+ value: 22.108
957
+ - type: mrr_at_10
958
+ value: 28.646
959
+ - type: mrr_at_100
960
+ value: 29.477999999999998
961
+ - type: mrr_at_1000
962
+ value: 29.57
963
+ - type: mrr_at_3
964
+ value: 26.415
965
+ - type: mrr_at_5
966
+ value: 27.693
967
+ - type: ndcg_at_1
968
+ value: 22.108
969
+ - type: ndcg_at_10
970
+ value: 29.42
971
+ - type: ndcg_at_100
972
+ value: 34.385
973
+ - type: ndcg_at_1000
974
+ value: 37.572
975
+ - type: ndcg_at_3
976
+ value: 25.274
977
+ - type: ndcg_at_5
978
+ value: 27.315
979
+ - type: precision_at_1
980
+ value: 22.108
981
+ - type: precision_at_10
982
+ value: 5.093
983
+ - type: precision_at_100
984
+ value: 0.859
985
+ - type: precision_at_1000
986
+ value: 0.124
987
+ - type: precision_at_3
988
+ value: 11.474
989
+ - type: precision_at_5
990
+ value: 8.321000000000002
991
+ - type: recall_at_1
992
+ value: 18.573
993
+ - type: recall_at_10
994
+ value: 39.433
995
+ - type: recall_at_100
996
+ value: 61.597
997
+ - type: recall_at_1000
998
+ value: 84.69
999
+ - type: recall_at_3
1000
+ value: 27.849
1001
+ - type: recall_at_5
1002
+ value: 33.202999999999996
1003
+ - task:
1004
+ type: Retrieval
1005
+ dataset:
1006
+ type: BeIR/cqadupstack
1007
+ name: MTEB CQADupstackWebmastersRetrieval
1008
+ config: default
1009
+ split: test
1010
+ revision: None
1011
+ metrics:
1012
+ - type: map_at_1
1013
+ value: 22.807
1014
+ - type: map_at_10
1015
+ value: 30.014000000000003
1016
+ - type: map_at_100
1017
+ value: 31.422
1018
+ - type: map_at_1000
1019
+ value: 31.652
1020
+ - type: map_at_3
1021
+ value: 27.447
1022
+ - type: map_at_5
1023
+ value: 28.711
1024
+ - type: mrr_at_1
1025
+ value: 27.668
1026
+ - type: mrr_at_10
1027
+ value: 34.489
1028
+ - type: mrr_at_100
1029
+ value: 35.453
1030
+ - type: mrr_at_1000
1031
+ value: 35.526
1032
+ - type: mrr_at_3
1033
+ value: 32.477000000000004
1034
+ - type: mrr_at_5
1035
+ value: 33.603
1036
+ - type: ndcg_at_1
1037
+ value: 27.668
1038
+ - type: ndcg_at_10
1039
+ value: 34.983
1040
+ - type: ndcg_at_100
1041
+ value: 40.535
1042
+ - type: ndcg_at_1000
1043
+ value: 43.747
1044
+ - type: ndcg_at_3
1045
+ value: 31.026999999999997
1046
+ - type: ndcg_at_5
1047
+ value: 32.608
1048
+ - type: precision_at_1
1049
+ value: 27.668
1050
+ - type: precision_at_10
1051
+ value: 6.837999999999999
1052
+ - type: precision_at_100
1053
+ value: 1.411
1054
+ - type: precision_at_1000
1055
+ value: 0.23600000000000002
1056
+ - type: precision_at_3
1057
+ value: 14.295
1058
+ - type: precision_at_5
1059
+ value: 10.435
1060
+ - type: recall_at_1
1061
+ value: 22.807
1062
+ - type: recall_at_10
1063
+ value: 43.545
1064
+ - type: recall_at_100
1065
+ value: 69.39800000000001
1066
+ - type: recall_at_1000
1067
+ value: 90.706
1068
+ - type: recall_at_3
1069
+ value: 32.183
1070
+ - type: recall_at_5
1071
+ value: 36.563
1072
+ - task:
1073
+ type: Retrieval
1074
+ dataset:
1075
+ type: BeIR/cqadupstack
1076
+ name: MTEB CQADupstackWordpressRetrieval
1077
+ config: default
1078
+ split: test
1079
+ revision: None
1080
+ metrics:
1081
+ - type: map_at_1
1082
+ value: 13.943
1083
+ - type: map_at_10
1084
+ value: 20.419999999999998
1085
+ - type: map_at_100
1086
+ value: 21.335
1087
+ - type: map_at_1000
1088
+ value: 21.44
1089
+ - type: map_at_3
1090
+ value: 17.865000000000002
1091
+ - type: map_at_5
1092
+ value: 19.36
1093
+ - type: mrr_at_1
1094
+ value: 15.712000000000002
1095
+ - type: mrr_at_10
1096
+ value: 22.345000000000002
1097
+ - type: mrr_at_100
1098
+ value: 23.227999999999998
1099
+ - type: mrr_at_1000
1100
+ value: 23.304
1101
+ - type: mrr_at_3
1102
+ value: 19.901
1103
+ - type: mrr_at_5
1104
+ value: 21.325
1105
+ - type: ndcg_at_1
1106
+ value: 15.712000000000002
1107
+ - type: ndcg_at_10
1108
+ value: 24.801000000000002
1109
+ - type: ndcg_at_100
1110
+ value: 29.799
1111
+ - type: ndcg_at_1000
1112
+ value: 32.513999999999996
1113
+ - type: ndcg_at_3
1114
+ value: 19.750999999999998
1115
+ - type: ndcg_at_5
1116
+ value: 22.252
1117
+ - type: precision_at_1
1118
+ value: 15.712000000000002
1119
+ - type: precision_at_10
1120
+ value: 4.1770000000000005
1121
+ - type: precision_at_100
1122
+ value: 0.738
1123
+ - type: precision_at_1000
1124
+ value: 0.106
1125
+ - type: precision_at_3
1126
+ value: 8.688
1127
+ - type: precision_at_5
1128
+ value: 6.617000000000001
1129
+ - type: recall_at_1
1130
+ value: 13.943
1131
+ - type: recall_at_10
1132
+ value: 36.913000000000004
1133
+ - type: recall_at_100
1134
+ value: 60.519
1135
+ - type: recall_at_1000
1136
+ value: 81.206
1137
+ - type: recall_at_3
1138
+ value: 23.006999999999998
1139
+ - type: recall_at_5
1140
+ value: 29.082
1141
+ - task:
1142
+ type: Retrieval
1143
+ dataset:
1144
+ type: climate-fever
1145
+ name: MTEB ClimateFEVER
1146
+ config: default
1147
+ split: test
1148
+ revision: None
1149
+ metrics:
1150
+ - type: map_at_1
1151
+ value: 9.468
1152
+ - type: map_at_10
1153
+ value: 16.029
1154
+ - type: map_at_100
1155
+ value: 17.693
1156
+ - type: map_at_1000
1157
+ value: 17.886
1158
+ - type: map_at_3
1159
+ value: 13.15
1160
+ - type: map_at_5
1161
+ value: 14.568
1162
+ - type: mrr_at_1
1163
+ value: 21.173000000000002
1164
+ - type: mrr_at_10
1165
+ value: 31.028
1166
+ - type: mrr_at_100
1167
+ value: 32.061
1168
+ - type: mrr_at_1000
1169
+ value: 32.119
1170
+ - type: mrr_at_3
1171
+ value: 27.534999999999997
1172
+ - type: mrr_at_5
1173
+ value: 29.431
1174
+ - type: ndcg_at_1
1175
+ value: 21.173000000000002
1176
+ - type: ndcg_at_10
1177
+ value: 23.224
1178
+ - type: ndcg_at_100
1179
+ value: 30.225
1180
+ - type: ndcg_at_1000
1181
+ value: 33.961000000000006
1182
+ - type: ndcg_at_3
1183
+ value: 18.174
1184
+ - type: ndcg_at_5
1185
+ value: 19.897000000000002
1186
+ - type: precision_at_1
1187
+ value: 21.173000000000002
1188
+ - type: precision_at_10
1189
+ value: 7.4719999999999995
1190
+ - type: precision_at_100
1191
+ value: 1.5010000000000001
1192
+ - type: precision_at_1000
1193
+ value: 0.219
1194
+ - type: precision_at_3
1195
+ value: 13.312
1196
+ - type: precision_at_5
1197
+ value: 10.619
1198
+ - type: recall_at_1
1199
+ value: 9.468
1200
+ - type: recall_at_10
1201
+ value: 28.823
1202
+ - type: recall_at_100
1203
+ value: 53.26499999999999
1204
+ - type: recall_at_1000
1205
+ value: 74.536
1206
+ - type: recall_at_3
1207
+ value: 16.672
1208
+ - type: recall_at_5
1209
+ value: 21.302
1210
+ - task:
1211
+ type: Retrieval
1212
+ dataset:
1213
+ type: dbpedia-entity
1214
+ name: MTEB DBPedia
1215
+ config: default
1216
+ split: test
1217
+ revision: None
1218
+ metrics:
1219
+ - type: map_at_1
1220
+ value: 6.343
1221
+ - type: map_at_10
1222
+ value: 12.717
1223
+ - type: map_at_100
1224
+ value: 16.48
1225
+ - type: map_at_1000
1226
+ value: 17.381
1227
+ - type: map_at_3
1228
+ value: 9.568999999999999
1229
+ - type: map_at_5
1230
+ value: 11.125
1231
+ - type: mrr_at_1
1232
+ value: 48.75
1233
+ - type: mrr_at_10
1234
+ value: 58.425000000000004
1235
+ - type: mrr_at_100
1236
+ value: 59.075
1237
+ - type: mrr_at_1000
1238
+ value: 59.095
1239
+ - type: mrr_at_3
1240
+ value: 56.291999999999994
1241
+ - type: mrr_at_5
1242
+ value: 57.679
1243
+ - type: ndcg_at_1
1244
+ value: 37.875
1245
+ - type: ndcg_at_10
1246
+ value: 27.77
1247
+ - type: ndcg_at_100
1248
+ value: 30.288999999999998
1249
+ - type: ndcg_at_1000
1250
+ value: 36.187999999999995
1251
+ - type: ndcg_at_3
1252
+ value: 31.385999999999996
1253
+ - type: ndcg_at_5
1254
+ value: 29.923
1255
+ - type: precision_at_1
1256
+ value: 48.75
1257
+ - type: precision_at_10
1258
+ value: 22.375
1259
+ - type: precision_at_100
1260
+ value: 6.3420000000000005
1261
+ - type: precision_at_1000
1262
+ value: 1.4489999999999998
1263
+ - type: precision_at_3
1264
+ value: 35.5
1265
+ - type: precision_at_5
1266
+ value: 30.55
1267
+ - type: recall_at_1
1268
+ value: 6.343
1269
+ - type: recall_at_10
1270
+ value: 16.936
1271
+ - type: recall_at_100
1272
+ value: 35.955999999999996
1273
+ - type: recall_at_1000
1274
+ value: 55.787
1275
+ - type: recall_at_3
1276
+ value: 10.771
1277
+ - type: recall_at_5
1278
+ value: 13.669999999999998
1279
+ - task:
1280
+ type: Classification
1281
+ dataset:
1282
+ type: mteb/emotion
1283
+ name: MTEB EmotionClassification
1284
+ config: default
1285
+ split: test
1286
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1287
+ metrics:
1288
+ - type: accuracy
1289
+ value: 41.99
1290
+ - type: f1
1291
+ value: 36.823402174564954
1292
+ - task:
1293
+ type: Retrieval
1294
+ dataset:
1295
+ type: fever
1296
+ name: MTEB FEVER
1297
+ config: default
1298
+ split: test
1299
+ revision: None
1300
+ metrics:
1301
+ - type: map_at_1
1302
+ value: 40.088
1303
+ - type: map_at_10
1304
+ value: 52.69200000000001
1305
+ - type: map_at_100
1306
+ value: 53.296
1307
+ - type: map_at_1000
1308
+ value: 53.325
1309
+ - type: map_at_3
1310
+ value: 49.905
1311
+ - type: map_at_5
1312
+ value: 51.617000000000004
1313
+ - type: mrr_at_1
1314
+ value: 43.009
1315
+ - type: mrr_at_10
1316
+ value: 56.203
1317
+ - type: mrr_at_100
1318
+ value: 56.75
1319
+ - type: mrr_at_1000
1320
+ value: 56.769000000000005
1321
+ - type: mrr_at_3
1322
+ value: 53.400000000000006
1323
+ - type: mrr_at_5
1324
+ value: 55.163
1325
+ - type: ndcg_at_1
1326
+ value: 43.009
1327
+ - type: ndcg_at_10
1328
+ value: 59.39
1329
+ - type: ndcg_at_100
1330
+ value: 62.129999999999995
1331
+ - type: ndcg_at_1000
1332
+ value: 62.793
1333
+ - type: ndcg_at_3
1334
+ value: 53.878
1335
+ - type: ndcg_at_5
1336
+ value: 56.887
1337
+ - type: precision_at_1
1338
+ value: 43.009
1339
+ - type: precision_at_10
1340
+ value: 8.366
1341
+ - type: precision_at_100
1342
+ value: 0.983
1343
+ - type: precision_at_1000
1344
+ value: 0.105
1345
+ - type: precision_at_3
1346
+ value: 22.377
1347
+ - type: precision_at_5
1348
+ value: 15.035000000000002
1349
+ - type: recall_at_1
1350
+ value: 40.088
1351
+ - type: recall_at_10
1352
+ value: 76.68700000000001
1353
+ - type: recall_at_100
1354
+ value: 88.91
1355
+ - type: recall_at_1000
1356
+ value: 93.782
1357
+ - type: recall_at_3
1358
+ value: 61.809999999999995
1359
+ - type: recall_at_5
1360
+ value: 69.131
1361
+ - task:
1362
+ type: Retrieval
1363
+ dataset:
1364
+ type: fiqa
1365
+ name: MTEB FiQA2018
1366
+ config: default
1367
+ split: test
1368
+ revision: None
1369
+ metrics:
1370
+ - type: map_at_1
1371
+ value: 10.817
1372
+ - type: map_at_10
1373
+ value: 18.9
1374
+ - type: map_at_100
1375
+ value: 20.448
1376
+ - type: map_at_1000
1377
+ value: 20.660999999999998
1378
+ - type: map_at_3
1379
+ value: 15.979
1380
+ - type: map_at_5
1381
+ value: 17.415
1382
+ - type: mrr_at_1
1383
+ value: 23.148
1384
+ - type: mrr_at_10
1385
+ value: 31.208000000000002
1386
+ - type: mrr_at_100
1387
+ value: 32.167
1388
+ - type: mrr_at_1000
1389
+ value: 32.242
1390
+ - type: mrr_at_3
1391
+ value: 28.498
1392
+ - type: mrr_at_5
1393
+ value: 29.964000000000002
1394
+ - type: ndcg_at_1
1395
+ value: 23.148
1396
+ - type: ndcg_at_10
1397
+ value: 25.325999999999997
1398
+ - type: ndcg_at_100
1399
+ value: 31.927
1400
+ - type: ndcg_at_1000
1401
+ value: 36.081
1402
+ - type: ndcg_at_3
1403
+ value: 21.647
1404
+ - type: ndcg_at_5
1405
+ value: 22.762999999999998
1406
+ - type: precision_at_1
1407
+ value: 23.148
1408
+ - type: precision_at_10
1409
+ value: 7.546
1410
+ - type: precision_at_100
1411
+ value: 1.415
1412
+ - type: precision_at_1000
1413
+ value: 0.216
1414
+ - type: precision_at_3
1415
+ value: 14.969
1416
+ - type: precision_at_5
1417
+ value: 11.327
1418
+ - type: recall_at_1
1419
+ value: 10.817
1420
+ - type: recall_at_10
1421
+ value: 32.164
1422
+ - type: recall_at_100
1423
+ value: 57.655
1424
+ - type: recall_at_1000
1425
+ value: 82.797
1426
+ - type: recall_at_3
1427
+ value: 19.709
1428
+ - type: recall_at_5
1429
+ value: 24.333
1430
+ - task:
1431
+ type: Retrieval
1432
+ dataset:
1433
+ type: hotpotqa
1434
+ name: MTEB HotpotQA
1435
+ config: default
1436
+ split: test
1437
+ revision: None
1438
+ metrics:
1439
+ - type: map_at_1
1440
+ value: 25.380999999999997
1441
+ - type: map_at_10
1442
+ value: 33.14
1443
+ - type: map_at_100
1444
+ value: 33.948
1445
+ - type: map_at_1000
1446
+ value: 34.028000000000006
1447
+ - type: map_at_3
1448
+ value: 31.019999999999996
1449
+ - type: map_at_5
1450
+ value: 32.23
1451
+ - type: mrr_at_1
1452
+ value: 50.763000000000005
1453
+ - type: mrr_at_10
1454
+ value: 57.899
1455
+ - type: mrr_at_100
1456
+ value: 58.426
1457
+ - type: mrr_at_1000
1458
+ value: 58.457
1459
+ - type: mrr_at_3
1460
+ value: 56.093
1461
+ - type: mrr_at_5
1462
+ value: 57.116
1463
+ - type: ndcg_at_1
1464
+ value: 50.763000000000005
1465
+ - type: ndcg_at_10
1466
+ value: 41.656
1467
+ - type: ndcg_at_100
1468
+ value: 45.079
1469
+ - type: ndcg_at_1000
1470
+ value: 46.916999999999994
1471
+ - type: ndcg_at_3
1472
+ value: 37.834
1473
+ - type: ndcg_at_5
1474
+ value: 39.732
1475
+ - type: precision_at_1
1476
+ value: 50.763000000000005
1477
+ - type: precision_at_10
1478
+ value: 8.648
1479
+ - type: precision_at_100
1480
+ value: 1.135
1481
+ - type: precision_at_1000
1482
+ value: 0.13799999999999998
1483
+ - type: precision_at_3
1484
+ value: 23.105999999999998
1485
+ - type: precision_at_5
1486
+ value: 15.363
1487
+ - type: recall_at_1
1488
+ value: 25.380999999999997
1489
+ - type: recall_at_10
1490
+ value: 43.241
1491
+ - type: recall_at_100
1492
+ value: 56.745000000000005
1493
+ - type: recall_at_1000
1494
+ value: 69.048
1495
+ - type: recall_at_3
1496
+ value: 34.659
1497
+ - type: recall_at_5
1498
+ value: 38.406
1499
+ - task:
1500
+ type: Classification
1501
+ dataset:
1502
+ type: mteb/imdb
1503
+ name: MTEB ImdbClassification
1504
+ config: default
1505
+ split: test
1506
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1507
+ metrics:
1508
+ - type: accuracy
1509
+ value: 79.544
1510
+ - type: ap
1511
+ value: 73.82920133396664
1512
+ - type: f1
1513
+ value: 79.51048124883265
1514
+ - task:
1515
+ type: Retrieval
1516
+ dataset:
1517
+ type: msmarco
1518
+ name: MTEB MSMARCO
1519
+ config: default
1520
+ split: dev
1521
+ revision: None
1522
+ metrics:
1523
+ - type: map_at_1
1524
+ value: 11.174000000000001
1525
+ - type: map_at_10
1526
+ value: 19.451999999999998
1527
+ - type: map_at_100
1528
+ value: 20.612
1529
+ - type: map_at_1000
1530
+ value: 20.703
1531
+ - type: map_at_3
1532
+ value: 16.444
1533
+ - type: map_at_5
1534
+ value: 18.083
1535
+ - type: mrr_at_1
1536
+ value: 11.447000000000001
1537
+ - type: mrr_at_10
1538
+ value: 19.808
1539
+ - type: mrr_at_100
1540
+ value: 20.958
1541
+ - type: mrr_at_1000
1542
+ value: 21.041999999999998
1543
+ - type: mrr_at_3
1544
+ value: 16.791
1545
+ - type: mrr_at_5
1546
+ value: 18.459
1547
+ - type: ndcg_at_1
1548
+ value: 11.447000000000001
1549
+ - type: ndcg_at_10
1550
+ value: 24.556
1551
+ - type: ndcg_at_100
1552
+ value: 30.637999999999998
1553
+ - type: ndcg_at_1000
1554
+ value: 33.14
1555
+ - type: ndcg_at_3
1556
+ value: 18.325
1557
+ - type: ndcg_at_5
1558
+ value: 21.278
1559
+ - type: precision_at_1
1560
+ value: 11.447000000000001
1561
+ - type: precision_at_10
1562
+ value: 4.215
1563
+ - type: precision_at_100
1564
+ value: 0.732
1565
+ - type: precision_at_1000
1566
+ value: 0.095
1567
+ - type: precision_at_3
1568
+ value: 8.052
1569
+ - type: precision_at_5
1570
+ value: 6.318
1571
+ - type: recall_at_1
1572
+ value: 11.174000000000001
1573
+ - type: recall_at_10
1574
+ value: 40.543
1575
+ - type: recall_at_100
1576
+ value: 69.699
1577
+ - type: recall_at_1000
1578
+ value: 89.403
1579
+ - type: recall_at_3
1580
+ value: 23.442
1581
+ - type: recall_at_5
1582
+ value: 30.536
1583
+ - task:
1584
+ type: Classification
1585
+ dataset:
1586
+ type: mteb/mtop_domain
1587
+ name: MTEB MTOPDomainClassification (en)
1588
+ config: en
1589
+ split: test
1590
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1591
+ metrics:
1592
+ - type: accuracy
1593
+ value: 89.6671226630187
1594
+ - type: f1
1595
+ value: 89.57660424361246
1596
+ - task:
1597
+ type: Classification
1598
+ dataset:
1599
+ type: mteb/mtop_intent
1600
+ name: MTEB MTOPIntentClassification (en)
1601
+ config: en
1602
+ split: test
1603
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1604
+ metrics:
1605
+ - type: accuracy
1606
+ value: 60.284997720018254
1607
+ - type: f1
1608
+ value: 40.30637400152823
1609
+ - task:
1610
+ type: Classification
1611
+ dataset:
1612
+ type: mteb/amazon_massive_intent
1613
+ name: MTEB MassiveIntentClassification (en)
1614
+ config: en
1615
+ split: test
1616
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1617
+ metrics:
1618
+ - type: accuracy
1619
+ value: 63.33557498318763
1620
+ - type: f1
1621
+ value: 60.24039910680179
1622
+ - task:
1623
+ type: Classification
1624
+ dataset:
1625
+ type: mteb/amazon_massive_scenario
1626
+ name: MTEB MassiveScenarioClassification (en)
1627
+ config: en
1628
+ split: test
1629
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1630
+ metrics:
1631
+ - type: accuracy
1632
+ value: 72.37390719569603
1633
+ - type: f1
1634
+ value: 72.33097333477316
1635
+ - task:
1636
+ type: Clustering
1637
+ dataset:
1638
+ type: mteb/medrxiv-clustering-p2p
1639
+ name: MTEB MedrxivClusteringP2P
1640
+ config: default
1641
+ split: test
1642
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1643
+ metrics:
1644
+ - type: v_measure
1645
+ value: 34.68158939060552
1646
+ - task:
1647
+ type: Clustering
1648
+ dataset:
1649
+ type: mteb/medrxiv-clustering-s2s
1650
+ name: MTEB MedrxivClusteringS2S
1651
+ config: default
1652
+ split: test
1653
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1654
+ metrics:
1655
+ - type: v_measure
1656
+ value: 30.340061711905236
1657
+ - task:
1658
+ type: Reranking
1659
+ dataset:
1660
+ type: mteb/mind_small
1661
+ name: MTEB MindSmallReranking
1662
+ config: default
1663
+ split: test
1664
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1665
+ metrics:
1666
+ - type: map
1667
+ value: 32.01814326295803
1668
+ - type: mrr
1669
+ value: 33.20555240055367
1670
+ - task:
1671
+ type: Retrieval
1672
+ dataset:
1673
+ type: nfcorpus
1674
+ name: MTEB NFCorpus
1675
+ config: default
1676
+ split: test
1677
+ revision: None
1678
+ metrics:
1679
+ - type: map_at_1
1680
+ value: 3.3910000000000005
1681
+ - type: map_at_10
1682
+ value: 7.7219999999999995
1683
+ - type: map_at_100
1684
+ value: 10.286
1685
+ - type: map_at_1000
1686
+ value: 11.668000000000001
1687
+ - type: map_at_3
1688
+ value: 5.552
1689
+ - type: map_at_5
1690
+ value: 6.468
1691
+ - type: mrr_at_1
1692
+ value: 34.365
1693
+ - type: mrr_at_10
1694
+ value: 42.555
1695
+ - type: mrr_at_100
1696
+ value: 43.295
1697
+ - type: mrr_at_1000
1698
+ value: 43.357
1699
+ - type: mrr_at_3
1700
+ value: 40.299
1701
+ - type: mrr_at_5
1702
+ value: 41.182
1703
+ - type: ndcg_at_1
1704
+ value: 31.424000000000003
1705
+ - type: ndcg_at_10
1706
+ value: 24.758
1707
+ - type: ndcg_at_100
1708
+ value: 23.677999999999997
1709
+ - type: ndcg_at_1000
1710
+ value: 33.377
1711
+ - type: ndcg_at_3
1712
+ value: 28.302
1713
+ - type: ndcg_at_5
1714
+ value: 26.342
1715
+ - type: precision_at_1
1716
+ value: 33.437
1717
+ - type: precision_at_10
1718
+ value: 19.256999999999998
1719
+ - type: precision_at_100
1720
+ value: 6.662999999999999
1721
+ - type: precision_at_1000
1722
+ value: 1.9900000000000002
1723
+ - type: precision_at_3
1724
+ value: 27.761000000000003
1725
+ - type: precision_at_5
1726
+ value: 23.715
1727
+ - type: recall_at_1
1728
+ value: 3.3910000000000005
1729
+ - type: recall_at_10
1730
+ value: 11.068
1731
+ - type: recall_at_100
1732
+ value: 25.878
1733
+ - type: recall_at_1000
1734
+ value: 60.19
1735
+ - type: recall_at_3
1736
+ value: 6.1690000000000005
1737
+ - type: recall_at_5
1738
+ value: 7.767
1739
+ - task:
1740
+ type: Retrieval
1741
+ dataset:
1742
+ type: nq
1743
+ name: MTEB NQ
1744
+ config: default
1745
+ split: test
1746
+ revision: None
1747
+ metrics:
1748
+ - type: map_at_1
1749
+ value: 15.168000000000001
1750
+ - type: map_at_10
1751
+ value: 26.177
1752
+ - type: map_at_100
1753
+ value: 27.564
1754
+ - type: map_at_1000
1755
+ value: 27.628999999999998
1756
+ - type: map_at_3
1757
+ value: 22.03
1758
+ - type: map_at_5
1759
+ value: 24.276
1760
+ - type: mrr_at_1
1761
+ value: 17.439
1762
+ - type: mrr_at_10
1763
+ value: 28.205000000000002
1764
+ - type: mrr_at_100
1765
+ value: 29.357
1766
+ - type: mrr_at_1000
1767
+ value: 29.408
1768
+ - type: mrr_at_3
1769
+ value: 24.377
1770
+ - type: mrr_at_5
1771
+ value: 26.540000000000003
1772
+ - type: ndcg_at_1
1773
+ value: 17.41
1774
+ - type: ndcg_at_10
1775
+ value: 32.936
1776
+ - type: ndcg_at_100
1777
+ value: 39.196999999999996
1778
+ - type: ndcg_at_1000
1779
+ value: 40.892
1780
+ - type: ndcg_at_3
1781
+ value: 24.721
1782
+ - type: ndcg_at_5
1783
+ value: 28.615000000000002
1784
+ - type: precision_at_1
1785
+ value: 17.41
1786
+ - type: precision_at_10
1787
+ value: 6.199000000000001
1788
+ - type: precision_at_100
1789
+ value: 0.9690000000000001
1790
+ - type: precision_at_1000
1791
+ value: 0.11299999999999999
1792
+ - type: precision_at_3
1793
+ value: 11.790000000000001
1794
+ - type: precision_at_5
1795
+ value: 9.264
1796
+ - type: recall_at_1
1797
+ value: 15.168000000000001
1798
+ - type: recall_at_10
1799
+ value: 51.914
1800
+ - type: recall_at_100
1801
+ value: 79.804
1802
+ - type: recall_at_1000
1803
+ value: 92.75999999999999
1804
+ - type: recall_at_3
1805
+ value: 30.212
1806
+ - type: recall_at_5
1807
+ value: 39.204
1808
+ - task:
1809
+ type: Retrieval
1810
+ dataset:
1811
+ type: quora
1812
+ name: MTEB QuoraRetrieval
1813
+ config: default
1814
+ split: test
1815
+ revision: None
1816
+ metrics:
1817
+ - type: map_at_1
1818
+ value: 67.306
1819
+ - type: map_at_10
1820
+ value: 80.634
1821
+ - type: map_at_100
1822
+ value: 81.349
1823
+ - type: map_at_1000
1824
+ value: 81.37299999999999
1825
+ - type: map_at_3
1826
+ value: 77.691
1827
+ - type: map_at_5
1828
+ value: 79.512
1829
+ - type: mrr_at_1
1830
+ value: 77.56
1831
+ - type: mrr_at_10
1832
+ value: 84.177
1833
+ - type: mrr_at_100
1834
+ value: 84.35000000000001
1835
+ - type: mrr_at_1000
1836
+ value: 84.353
1837
+ - type: mrr_at_3
1838
+ value: 83.003
1839
+ - type: mrr_at_5
1840
+ value: 83.799
1841
+ - type: ndcg_at_1
1842
+ value: 77.58
1843
+ - type: ndcg_at_10
1844
+ value: 84.782
1845
+ - type: ndcg_at_100
1846
+ value: 86.443
1847
+ - type: ndcg_at_1000
1848
+ value: 86.654
1849
+ - type: ndcg_at_3
1850
+ value: 81.67
1851
+ - type: ndcg_at_5
1852
+ value: 83.356
1853
+ - type: precision_at_1
1854
+ value: 77.58
1855
+ - type: precision_at_10
1856
+ value: 12.875
1857
+ - type: precision_at_100
1858
+ value: 1.503
1859
+ - type: precision_at_1000
1860
+ value: 0.156
1861
+ - type: precision_at_3
1862
+ value: 35.63
1863
+ - type: precision_at_5
1864
+ value: 23.483999999999998
1865
+ - type: recall_at_1
1866
+ value: 67.306
1867
+ - type: recall_at_10
1868
+ value: 92.64
1869
+ - type: recall_at_100
1870
+ value: 98.681
1871
+ - type: recall_at_1000
1872
+ value: 99.79
1873
+ - type: recall_at_3
1874
+ value: 83.682
1875
+ - type: recall_at_5
1876
+ value: 88.424
1877
+ - task:
1878
+ type: Clustering
1879
+ dataset:
1880
+ type: mteb/reddit-clustering
1881
+ name: MTEB RedditClustering
1882
+ config: default
1883
+ split: test
1884
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1885
+ metrics:
1886
+ - type: v_measure
1887
+ value: 50.76319866126382
1888
+ - task:
1889
+ type: Clustering
1890
+ dataset:
1891
+ type: mteb/reddit-clustering-p2p
1892
+ name: MTEB RedditClusteringP2P
1893
+ config: default
1894
+ split: test
1895
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1896
+ metrics:
1897
+ - type: v_measure
1898
+ value: 55.024711941648995
1899
+ - task:
1900
+ type: Retrieval
1901
+ dataset:
1902
+ type: scidocs
1903
+ name: MTEB SCIDOCS
1904
+ config: default
1905
+ split: test
1906
+ revision: None
1907
+ metrics:
1908
+ - type: map_at_1
1909
+ value: 3.9379999999999997
1910
+ - type: map_at_10
1911
+ value: 8.817
1912
+ - type: map_at_100
1913
+ value: 10.546999999999999
1914
+ - type: map_at_1000
1915
+ value: 10.852
1916
+ - type: map_at_3
1917
+ value: 6.351999999999999
1918
+ - type: map_at_5
1919
+ value: 7.453
1920
+ - type: mrr_at_1
1921
+ value: 19.400000000000002
1922
+ - type: mrr_at_10
1923
+ value: 27.371000000000002
1924
+ - type: mrr_at_100
1925
+ value: 28.671999999999997
1926
+ - type: mrr_at_1000
1927
+ value: 28.747
1928
+ - type: mrr_at_3
1929
+ value: 24.583
1930
+ - type: mrr_at_5
1931
+ value: 26.143
1932
+ - type: ndcg_at_1
1933
+ value: 19.400000000000002
1934
+ - type: ndcg_at_10
1935
+ value: 15.264
1936
+ - type: ndcg_at_100
1937
+ value: 22.63
1938
+ - type: ndcg_at_1000
1939
+ value: 28.559
1940
+ - type: ndcg_at_3
1941
+ value: 14.424999999999999
1942
+ - type: ndcg_at_5
1943
+ value: 12.520000000000001
1944
+ - type: precision_at_1
1945
+ value: 19.400000000000002
1946
+ - type: precision_at_10
1947
+ value: 7.8100000000000005
1948
+ - type: precision_at_100
1949
+ value: 1.854
1950
+ - type: precision_at_1000
1951
+ value: 0.329
1952
+ - type: precision_at_3
1953
+ value: 13.100000000000001
1954
+ - type: precision_at_5
1955
+ value: 10.68
1956
+ - type: recall_at_1
1957
+ value: 3.9379999999999997
1958
+ - type: recall_at_10
1959
+ value: 15.903
1960
+ - type: recall_at_100
1961
+ value: 37.645
1962
+ - type: recall_at_1000
1963
+ value: 66.86
1964
+ - type: recall_at_3
1965
+ value: 7.993
1966
+ - type: recall_at_5
1967
+ value: 10.885
1968
+ - task:
1969
+ type: STS
1970
+ dataset:
1971
+ type: mteb/sickr-sts
1972
+ name: MTEB SICK-R
1973
+ config: default
1974
+ split: test
1975
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1976
+ metrics:
1977
+ - type: cos_sim_pearson
1978
+ value: 80.12689060151425
1979
+ - type: cos_sim_spearman
1980
+ value: 70.46515535094771
1981
+ - type: euclidean_pearson
1982
+ value: 77.17160003557223
1983
+ - type: euclidean_spearman
1984
+ value: 70.4651757047438
1985
+ - type: manhattan_pearson
1986
+ value: 77.18129609281937
1987
+ - type: manhattan_spearman
1988
+ value: 70.46610403752913
1989
+ - task:
1990
+ type: STS
1991
+ dataset:
1992
+ type: mteb/sts12-sts
1993
+ name: MTEB STS12
1994
+ config: default
1995
+ split: test
1996
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1997
+ metrics:
1998
+ - type: cos_sim_pearson
1999
+ value: 70.451157033355
2000
+ - type: cos_sim_spearman
2001
+ value: 63.99899601697852
2002
+ - type: euclidean_pearson
2003
+ value: 67.46985359967678
2004
+ - type: euclidean_spearman
2005
+ value: 64.00001637764805
2006
+ - type: manhattan_pearson
2007
+ value: 67.56534741780037
2008
+ - type: manhattan_spearman
2009
+ value: 64.06533893575366
2010
+ - task:
2011
+ type: STS
2012
+ dataset:
2013
+ type: mteb/sts13-sts
2014
+ name: MTEB STS13
2015
+ config: default
2016
+ split: test
2017
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2018
+ metrics:
2019
+ - type: cos_sim_pearson
2020
+ value: 77.65086614464292
2021
+ - type: cos_sim_spearman
2022
+ value: 78.20169706921848
2023
+ - type: euclidean_pearson
2024
+ value: 77.77758172155283
2025
+ - type: euclidean_spearman
2026
+ value: 78.20169706921848
2027
+ - type: manhattan_pearson
2028
+ value: 77.75077884860052
2029
+ - type: manhattan_spearman
2030
+ value: 78.16875216484164
2031
+ - task:
2032
+ type: STS
2033
+ dataset:
2034
+ type: mteb/sts14-sts
2035
+ name: MTEB STS14
2036
+ config: default
2037
+ split: test
2038
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2039
+ metrics:
2040
+ - type: cos_sim_pearson
2041
+ value: 76.26381598259717
2042
+ - type: cos_sim_spearman
2043
+ value: 70.78377709313477
2044
+ - type: euclidean_pearson
2045
+ value: 74.82646556532096
2046
+ - type: euclidean_spearman
2047
+ value: 70.78377658155212
2048
+ - type: manhattan_pearson
2049
+ value: 74.81784766108225
2050
+ - type: manhattan_spearman
2051
+ value: 70.79351454692176
2052
+ - task:
2053
+ type: STS
2054
+ dataset:
2055
+ type: mteb/sts15-sts
2056
+ name: MTEB STS15
2057
+ config: default
2058
+ split: test
2059
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2060
+ metrics:
2061
+ - type: cos_sim_pearson
2062
+ value: 79.00532026789739
2063
+ - type: cos_sim_spearman
2064
+ value: 80.02708383244838
2065
+ - type: euclidean_pearson
2066
+ value: 79.48345422610525
2067
+ - type: euclidean_spearman
2068
+ value: 80.02708383244838
2069
+ - type: manhattan_pearson
2070
+ value: 79.44519739854803
2071
+ - type: manhattan_spearman
2072
+ value: 79.98344094559687
2073
+ - task:
2074
+ type: STS
2075
+ dataset:
2076
+ type: mteb/sts16-sts
2077
+ name: MTEB STS16
2078
+ config: default
2079
+ split: test
2080
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2081
+ metrics:
2082
+ - type: cos_sim_pearson
2083
+ value: 77.32783048164805
2084
+ - type: cos_sim_spearman
2085
+ value: 78.79729961288045
2086
+ - type: euclidean_pearson
2087
+ value: 78.72111945793154
2088
+ - type: euclidean_spearman
2089
+ value: 78.79729904606872
2090
+ - type: manhattan_pearson
2091
+ value: 78.72464311117116
2092
+ - type: manhattan_spearman
2093
+ value: 78.822591248334
2094
+ - task:
2095
+ type: STS
2096
+ dataset:
2097
+ type: mteb/sts17-crosslingual-sts
2098
+ name: MTEB STS17 (en-en)
2099
+ config: en-en
2100
+ split: test
2101
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2102
+ metrics:
2103
+ - type: cos_sim_pearson
2104
+ value: 82.04318630630854
2105
+ - type: cos_sim_spearman
2106
+ value: 83.87886389259836
2107
+ - type: euclidean_pearson
2108
+ value: 83.40385877895086
2109
+ - type: euclidean_spearman
2110
+ value: 83.87886389259836
2111
+ - type: manhattan_pearson
2112
+ value: 83.46337128901547
2113
+ - type: manhattan_spearman
2114
+ value: 83.9723106941644
2115
+ - task:
2116
+ type: STS
2117
+ dataset:
2118
+ type: mteb/sts22-crosslingual-sts
2119
+ name: MTEB STS22 (en)
2120
+ config: en
2121
+ split: test
2122
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2123
+ metrics:
2124
+ - type: cos_sim_pearson
2125
+ value: 63.003511169944595
2126
+ - type: cos_sim_spearman
2127
+ value: 64.39318805580227
2128
+ - type: euclidean_pearson
2129
+ value: 65.4797990735967
2130
+ - type: euclidean_spearman
2131
+ value: 64.39318805580227
2132
+ - type: manhattan_pearson
2133
+ value: 65.44604544280844
2134
+ - type: manhattan_spearman
2135
+ value: 64.38742899984233
2136
+ - task:
2137
+ type: STS
2138
+ dataset:
2139
+ type: mteb/stsbenchmark-sts
2140
+ name: MTEB STSBenchmark
2141
+ config: default
2142
+ split: test
2143
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2144
+ metrics:
2145
+ - type: cos_sim_pearson
2146
+ value: 76.63101237585029
2147
+ - type: cos_sim_spearman
2148
+ value: 75.57446967644269
2149
+ - type: euclidean_pearson
2150
+ value: 76.93491768734478
2151
+ - type: euclidean_spearman
2152
+ value: 75.57446967644269
2153
+ - type: manhattan_pearson
2154
+ value: 76.92187567800636
2155
+ - type: manhattan_spearman
2156
+ value: 75.57239337194585
2157
+ - task:
2158
+ type: Reranking
2159
+ dataset:
2160
+ type: mteb/scidocs-reranking
2161
+ name: MTEB SciDocsRR
2162
+ config: default
2163
+ split: test
2164
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2165
+ metrics:
2166
+ - type: map
2167
+ value: 78.5376604868993
2168
+ - type: mrr
2169
+ value: 92.94422897364073
2170
+ - task:
2171
+ type: Retrieval
2172
+ dataset:
2173
+ type: scifact
2174
+ name: MTEB SciFact
2175
+ config: default
2176
+ split: test
2177
+ revision: None
2178
+ metrics:
2179
+ - type: map_at_1
2180
+ value: 38.872
2181
+ - type: map_at_10
2182
+ value: 50.417
2183
+ - type: map_at_100
2184
+ value: 51.202000000000005
2185
+ - type: map_at_1000
2186
+ value: 51.25999999999999
2187
+ - type: map_at_3
2188
+ value: 47.02
2189
+ - type: map_at_5
2190
+ value: 49.326
2191
+ - type: mrr_at_1
2192
+ value: 41.0
2193
+ - type: mrr_at_10
2194
+ value: 51.674
2195
+ - type: mrr_at_100
2196
+ value: 52.32599999999999
2197
+ - type: mrr_at_1000
2198
+ value: 52.376999999999995
2199
+ - type: mrr_at_3
2200
+ value: 48.778
2201
+ - type: mrr_at_5
2202
+ value: 50.744
2203
+ - type: ndcg_at_1
2204
+ value: 41.0
2205
+ - type: ndcg_at_10
2206
+ value: 56.027
2207
+ - type: ndcg_at_100
2208
+ value: 59.362
2209
+ - type: ndcg_at_1000
2210
+ value: 60.839
2211
+ - type: ndcg_at_3
2212
+ value: 50.019999999999996
2213
+ - type: ndcg_at_5
2214
+ value: 53.644999999999996
2215
+ - type: precision_at_1
2216
+ value: 41.0
2217
+ - type: precision_at_10
2218
+ value: 8.1
2219
+ - type: precision_at_100
2220
+ value: 0.987
2221
+ - type: precision_at_1000
2222
+ value: 0.11100000000000002
2223
+ - type: precision_at_3
2224
+ value: 20.444000000000003
2225
+ - type: precision_at_5
2226
+ value: 14.466999999999999
2227
+ - type: recall_at_1
2228
+ value: 38.872
2229
+ - type: recall_at_10
2230
+ value: 71.906
2231
+ - type: recall_at_100
2232
+ value: 86.367
2233
+ - type: recall_at_1000
2234
+ value: 98.0
2235
+ - type: recall_at_3
2236
+ value: 56.206
2237
+ - type: recall_at_5
2238
+ value: 65.05
2239
+ - task:
2240
+ type: PairClassification
2241
+ dataset:
2242
+ type: mteb/sprintduplicatequestions-pairclassification
2243
+ name: MTEB SprintDuplicateQuestions
2244
+ config: default
2245
+ split: test
2246
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2247
+ metrics:
2248
+ - type: cos_sim_accuracy
2249
+ value: 99.7039603960396
2250
+ - type: cos_sim_ap
2251
+ value: 90.40809844250262
2252
+ - type: cos_sim_f1
2253
+ value: 84.53181583031557
2254
+ - type: cos_sim_precision
2255
+ value: 87.56698821007502
2256
+ - type: cos_sim_recall
2257
+ value: 81.69999999999999
2258
+ - type: dot_accuracy
2259
+ value: 99.7039603960396
2260
+ - type: dot_ap
2261
+ value: 90.40809844250262
2262
+ - type: dot_f1
2263
+ value: 84.53181583031557
2264
+ - type: dot_precision
2265
+ value: 87.56698821007502
2266
+ - type: dot_recall
2267
+ value: 81.69999999999999
2268
+ - type: euclidean_accuracy
2269
+ value: 99.7039603960396
2270
+ - type: euclidean_ap
2271
+ value: 90.4080982863383
2272
+ - type: euclidean_f1
2273
+ value: 84.53181583031557
2274
+ - type: euclidean_precision
2275
+ value: 87.56698821007502
2276
+ - type: euclidean_recall
2277
+ value: 81.69999999999999
2278
+ - type: manhattan_accuracy
2279
+ value: 99.7
2280
+ - type: manhattan_ap
2281
+ value: 90.39771161966652
2282
+ - type: manhattan_f1
2283
+ value: 84.32989690721648
2284
+ - type: manhattan_precision
2285
+ value: 87.02127659574468
2286
+ - type: manhattan_recall
2287
+ value: 81.8
2288
+ - type: max_accuracy
2289
+ value: 99.7039603960396
2290
+ - type: max_ap
2291
+ value: 90.40809844250262
2292
+ - type: max_f1
2293
+ value: 84.53181583031557
2294
+ - task:
2295
+ type: Clustering
2296
+ dataset:
2297
+ type: mteb/stackexchange-clustering
2298
+ name: MTEB StackExchangeClustering
2299
+ config: default
2300
+ split: test
2301
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2302
+ metrics:
2303
+ - type: v_measure
2304
+ value: 59.663210666678715
2305
+ - task:
2306
+ type: Clustering
2307
+ dataset:
2308
+ type: mteb/stackexchange-clustering-p2p
2309
+ name: MTEB StackExchangeClusteringP2P
2310
+ config: default
2311
+ split: test
2312
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2313
+ metrics:
2314
+ - type: v_measure
2315
+ value: 32.107791216468776
2316
+ - task:
2317
+ type: Reranking
2318
+ dataset:
2319
+ type: mteb/stackoverflowdupquestions-reranking
2320
+ name: MTEB StackOverflowDupQuestions
2321
+ config: default
2322
+ split: test
2323
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2324
+ metrics:
2325
+ - type: map
2326
+ value: 46.440691925067604
2327
+ - type: mrr
2328
+ value: 47.03390257618199
2329
+ - task:
2330
+ type: Summarization
2331
+ dataset:
2332
+ type: mteb/summeval
2333
+ name: MTEB SummEval
2334
+ config: default
2335
+ split: test
2336
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2337
+ metrics:
2338
+ - type: cos_sim_pearson
2339
+ value: 31.067177519784074
2340
+ - type: cos_sim_spearman
2341
+ value: 31.234728424648967
2342
+ - type: dot_pearson
2343
+ value: 31.06717083018107
2344
+ - type: dot_spearman
2345
+ value: 31.234728424648967
2346
+ - task:
2347
+ type: Retrieval
2348
+ dataset:
2349
+ type: trec-covid
2350
+ name: MTEB TRECCOVID
2351
+ config: default
2352
+ split: test
2353
+ revision: None
2354
+ metrics:
2355
+ - type: map_at_1
2356
+ value: 0.136
2357
+ - type: map_at_10
2358
+ value: 0.767
2359
+ - type: map_at_100
2360
+ value: 3.3689999999999998
2361
+ - type: map_at_1000
2362
+ value: 8.613999999999999
2363
+ - type: map_at_3
2364
+ value: 0.369
2365
+ - type: map_at_5
2366
+ value: 0.514
2367
+ - type: mrr_at_1
2368
+ value: 48.0
2369
+ - type: mrr_at_10
2370
+ value: 63.908
2371
+ - type: mrr_at_100
2372
+ value: 64.615
2373
+ - type: mrr_at_1000
2374
+ value: 64.615
2375
+ - type: mrr_at_3
2376
+ value: 62.0
2377
+ - type: mrr_at_5
2378
+ value: 63.4
2379
+ - type: ndcg_at_1
2380
+ value: 44.0
2381
+ - type: ndcg_at_10
2382
+ value: 38.579
2383
+ - type: ndcg_at_100
2384
+ value: 26.409
2385
+ - type: ndcg_at_1000
2386
+ value: 26.858999999999998
2387
+ - type: ndcg_at_3
2388
+ value: 47.134
2389
+ - type: ndcg_at_5
2390
+ value: 43.287
2391
+ - type: precision_at_1
2392
+ value: 48.0
2393
+ - type: precision_at_10
2394
+ value: 40.400000000000006
2395
+ - type: precision_at_100
2396
+ value: 26.640000000000004
2397
+ - type: precision_at_1000
2398
+ value: 12.04
2399
+ - type: precision_at_3
2400
+ value: 52.666999999999994
2401
+ - type: precision_at_5
2402
+ value: 46.800000000000004
2403
+ - type: recall_at_1
2404
+ value: 0.136
2405
+ - type: recall_at_10
2406
+ value: 1.0070000000000001
2407
+ - type: recall_at_100
2408
+ value: 6.318
2409
+ - type: recall_at_1000
2410
+ value: 26.522000000000002
2411
+ - type: recall_at_3
2412
+ value: 0.41700000000000004
2413
+ - type: recall_at_5
2414
+ value: 0.606
2415
+ - task:
2416
+ type: Retrieval
2417
+ dataset:
2418
+ type: webis-touche2020
2419
+ name: MTEB Touche2020
2420
+ config: default
2421
+ split: test
2422
+ revision: None
2423
+ metrics:
2424
+ - type: map_at_1
2425
+ value: 1.9949999999999999
2426
+ - type: map_at_10
2427
+ value: 8.304
2428
+ - type: map_at_100
2429
+ value: 13.644
2430
+ - type: map_at_1000
2431
+ value: 15.43
2432
+ - type: map_at_3
2433
+ value: 4.788
2434
+ - type: map_at_5
2435
+ value: 6.22
2436
+ - type: mrr_at_1
2437
+ value: 22.448999999999998
2438
+ - type: mrr_at_10
2439
+ value: 37.658
2440
+ - type: mrr_at_100
2441
+ value: 38.491
2442
+ - type: mrr_at_1000
2443
+ value: 38.503
2444
+ - type: mrr_at_3
2445
+ value: 32.312999999999995
2446
+ - type: mrr_at_5
2447
+ value: 35.68
2448
+ - type: ndcg_at_1
2449
+ value: 21.429000000000002
2450
+ - type: ndcg_at_10
2451
+ value: 18.995
2452
+ - type: ndcg_at_100
2453
+ value: 32.029999999999994
2454
+ - type: ndcg_at_1000
2455
+ value: 44.852
2456
+ - type: ndcg_at_3
2457
+ value: 19.464000000000002
2458
+ - type: ndcg_at_5
2459
+ value: 19.172
2460
+ - type: precision_at_1
2461
+ value: 22.448999999999998
2462
+ - type: precision_at_10
2463
+ value: 17.143
2464
+ - type: precision_at_100
2465
+ value: 6.877999999999999
2466
+ - type: precision_at_1000
2467
+ value: 1.524
2468
+ - type: precision_at_3
2469
+ value: 21.769
2470
+ - type: precision_at_5
2471
+ value: 20.0
2472
+ - type: recall_at_1
2473
+ value: 1.9949999999999999
2474
+ - type: recall_at_10
2475
+ value: 13.395999999999999
2476
+ - type: recall_at_100
2477
+ value: 44.348
2478
+ - type: recall_at_1000
2479
+ value: 82.622
2480
+ - type: recall_at_3
2481
+ value: 5.896
2482
+ - type: recall_at_5
2483
+ value: 8.554
2484
+ - task:
2485
+ type: Classification
2486
+ dataset:
2487
+ type: mteb/toxic_conversations_50k
2488
+ name: MTEB ToxicConversationsClassification
2489
+ config: default
2490
+ split: test
2491
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2492
+ metrics:
2493
+ - type: accuracy
2494
+ value: 67.9394
2495
+ - type: ap
2496
+ value: 12.943337263423334
2497
+ - type: f1
2498
+ value: 52.28243093094156
2499
+ - task:
2500
+ type: Classification
2501
+ dataset:
2502
+ type: mteb/tweet_sentiment_extraction
2503
+ name: MTEB TweetSentimentExtractionClassification
2504
+ config: default
2505
+ split: test
2506
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2507
+ metrics:
2508
+ - type: accuracy
2509
+ value: 56.414827391058296
2510
+ - type: f1
2511
+ value: 56.666412409573105
2512
+ - task:
2513
+ type: Clustering
2514
+ dataset:
2515
+ type: mteb/twentynewsgroups-clustering
2516
+ name: MTEB TwentyNewsgroupsClustering
2517
+ config: default
2518
+ split: test
2519
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2520
+ metrics:
2521
+ - type: v_measure
2522
+ value: 47.009746255495465
2523
+ - task:
2524
+ type: PairClassification
2525
+ dataset:
2526
+ type: mteb/twittersemeval2015-pairclassification
2527
+ name: MTEB TwitterSemEval2015
2528
+ config: default
2529
+ split: test
2530
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2531
+ metrics:
2532
+ - type: cos_sim_accuracy
2533
+ value: 84.02574953805807
2534
+ - type: cos_sim_ap
2535
+ value: 67.66599910763128
2536
+ - type: cos_sim_f1
2537
+ value: 63.491277990844985
2538
+ - type: cos_sim_precision
2539
+ value: 59.77172140694154
2540
+ - type: cos_sim_recall
2541
+ value: 67.70448548812665
2542
+ - type: dot_accuracy
2543
+ value: 84.02574953805807
2544
+ - type: dot_ap
2545
+ value: 67.66600090945406
2546
+ - type: dot_f1
2547
+ value: 63.491277990844985
2548
+ - type: dot_precision
2549
+ value: 59.77172140694154
2550
+ - type: dot_recall
2551
+ value: 67.70448548812665
2552
+ - type: euclidean_accuracy
2553
+ value: 84.02574953805807
2554
+ - type: euclidean_ap
2555
+ value: 67.6659842364448
2556
+ - type: euclidean_f1
2557
+ value: 63.491277990844985
2558
+ - type: euclidean_precision
2559
+ value: 59.77172140694154
2560
+ - type: euclidean_recall
2561
+ value: 67.70448548812665
2562
+ - type: manhattan_accuracy
2563
+ value: 84.0317100792752
2564
+ - type: manhattan_ap
2565
+ value: 67.66351692448987
2566
+ - type: manhattan_f1
2567
+ value: 63.48610948306178
2568
+ - type: manhattan_precision
2569
+ value: 57.11875131828729
2570
+ - type: manhattan_recall
2571
+ value: 71.45118733509234
2572
+ - type: max_accuracy
2573
+ value: 84.0317100792752
2574
+ - type: max_ap
2575
+ value: 67.66600090945406
2576
+ - type: max_f1
2577
+ value: 63.491277990844985
2578
+ - task:
2579
+ type: PairClassification
2580
+ dataset:
2581
+ type: mteb/twitterurlcorpus-pairclassification
2582
+ name: MTEB TwitterURLCorpus
2583
+ config: default
2584
+ split: test
2585
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2586
+ metrics:
2587
+ - type: cos_sim_accuracy
2588
+ value: 87.53832421314084
2589
+ - type: cos_sim_ap
2590
+ value: 83.11416594316626
2591
+ - type: cos_sim_f1
2592
+ value: 75.41118114347518
2593
+ - type: cos_sim_precision
2594
+ value: 73.12839059674504
2595
+ - type: cos_sim_recall
2596
+ value: 77.8410840776101
2597
+ - type: dot_accuracy
2598
+ value: 87.53832421314084
2599
+ - type: dot_ap
2600
+ value: 83.11416226342155
2601
+ - type: dot_f1
2602
+ value: 75.41118114347518
2603
+ - type: dot_precision
2604
+ value: 73.12839059674504
2605
+ - type: dot_recall
2606
+ value: 77.8410840776101
2607
+ - type: euclidean_accuracy
2608
+ value: 87.53832421314084
2609
+ - type: euclidean_ap
2610
+ value: 83.11416284455395
2611
+ - type: euclidean_f1
2612
+ value: 75.41118114347518
2613
+ - type: euclidean_precision
2614
+ value: 73.12839059674504
2615
+ - type: euclidean_recall
2616
+ value: 77.8410840776101
2617
+ - type: manhattan_accuracy
2618
+ value: 87.49369348391353
2619
+ - type: manhattan_ap
2620
+ value: 83.08066812574694
2621
+ - type: manhattan_f1
2622
+ value: 75.36561228603892
2623
+ - type: manhattan_precision
2624
+ value: 71.9202518363064
2625
+ - type: manhattan_recall
2626
+ value: 79.15768401601478
2627
+ - type: max_accuracy
2628
+ value: 87.53832421314084
2629
+ - type: max_ap
2630
+ value: 83.11416594316626
2631
+ - type: max_f1
2632
+ value: 75.41118114347518
2633
  ---
2634
+