james0248 commited on
Commit
fed4b7b
1 Parent(s): c4842c4

Reduce timesteps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 167.01 +/- 24.17
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 265.20 +/- 18.45
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b7cfdba60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b7cfdbaf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b7cfdbb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b7cfdbc10>", "_build": "<function ActorCriticPolicy._build at 0x7f0b7cfdbca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b7cfdbd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0b7cfdbdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b7cfdbe50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b7cfdbee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b7cfdbf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b7cfdf040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b7cfdf0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b7cfd5b70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674007452553927438, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDQQL5nq10/ylcgPvoGvr6/n3s8k0zkOwAAAAAAAAAAAJQVvB+ntj9uZ+y+BRSwPlmPKzyC/9M9AAAAAAAAAADNbA283imdPdlaAz4Nq8W9VwHhPbuR0D0AAAAAAAAAAI1rRr7+8po/LSupviX+qL4wN4S+MKxivAAAAAAAAAAAtk9RvkvN1D5Q7bU+RHI8vlYa/zoKRaY+AAAAAAAAAABzZrK9m3kmP9vG5Tt3syu++Tz5Oocwy70AAAAAAAAAAI2dn7348BQ/z/WIvYfLiL5k6NG8MiOavQAAAAAAAAAA83r5vYULmrlmmNeyQrVGseVynLs0+aQzAACAPwAAgD/A4qI94TuPO1pHsb1KOJy9UrEHvTx+AD0AAAAAAAAAAGbtjb5t2SI/BhAlPbyzn75Oy0q8FzwJPgAAAAAAAAAAmpARvQpKP7vhtCu8mw6MPME0wzwLv3C9AACAPwAAgD9Nc5c+JZ2DvTtCPjy9FAW7X5rgvi6QuLsAAIA/AACAPzoTJ75U3ng+AmYSPqDO4L0eDro92D91vQAAAAAAAAAAZtolPJecEjw+e3e8sjcVvnKrQ7qigAc9AAAAAAAAAABmLrk7nyv0u3tUJbyFopY8p4pJvbA5fD0AAIA/AACAP7NQzT2mmJY/OGZDPowsjr5FCiE+SquOPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy2YOSS21akCUhpRSlIwBbJRNPQKMAXSUR0CWRPS9du50dX2UKGgGaAloD0MIVn+EYQA0cECUhpRSlGgVTVcBaBZHQJZFTZZjhDR1fZQoaAZoCWgPQwhgArfu5jJyQJSGlFKUaBVNnQFoFkdAlkVZCa7Va3V9lChoBmgJaA9DCCDrqdVXKW9AlIaUUpRoFU1GAWgWR0CWRW62fChwdX2UKGgGaAloD0MIzzC1pc7EcECUhpRSlGgVTYoBaBZHQJZHRz+3pfR1fZQoaAZoCWgPQwiz8PW1LkUqwJSGlFKUaBVNFgFoFkdAlkhi+10DEHV9lChoBmgJaA9DCEmBBTBlXm5AlIaUUpRoFU2GAWgWR0CWSLGo73fydX2UKGgGaAloD0MIXrwft18Va0CUhpRSlGgVTXYBaBZHQJZJQWHk92Z1fZQoaAZoCWgPQwggs7PoHSlrQJSGlFKUaBVNhQFoFkdAlklOTNdJKHV9lChoBmgJaA9DCMCTFi4rPXBAlIaUUpRoFU1YAWgWR0CWSngtvn8sdX2UKGgGaAloD0MIo8ow7sZncECUhpRSlGgVTdUBaBZHQJZLT6ZYxL11fZQoaAZoCWgPQwhXtDnO7dxuQJSGlFKUaBVNZgFoFkdAlmD8gpz90nV9lChoBmgJaA9DCDQUd7xJ7m5AlIaUUpRoFU2FAWgWR0CWYb2cJ+lTdX2UKGgGaAloD0MIFEIHXYLocECUhpRSlGgVTVsBaBZHQJZh67I1cdJ1fZQoaAZoCWgPQwhmbOhmfyBsQJSGlFKUaBVNewFoFkdAlmVaRuCPIXV9lChoBmgJaA9DCP30nzU/lnFAlIaUUpRoFU2mAWgWR0CWZ7ZPl+3IdX2UKGgGaAloD0MIbFopBPKAcUCUhpRSlGgVTWcBaBZHQJZpFB0IToN1fZQoaAZoCWgPQwgB3Zcz221wQJSGlFKUaBVNggFoFkdAlmq8hcJMQHV9lChoBmgJaA9DCM43ontWu29AlIaUUpRoFU2LAWgWR0CWaxbmlqJudX2UKGgGaAloD0MImUuqthvZa0CUhpRSlGgVTXQBaBZHQJZsH8sMAm11fZQoaAZoCWgPQwhvn1VmSh5uQJSGlFKUaBVNaAFoFkdAlmz9alk6LnV9lChoBmgJaA9DCC8VG/N6XXBAlIaUUpRoFU2GAWgWR0CWbg4LThHcdX2UKGgGaAloD0MIGAXB41vucUCUhpRSlGgVTTsBaBZHQJZuDRtxdY51fZQoaAZoCWgPQwj+tbxyvbRxQJSGlFKUaBVNgAFoFkdAlm6qDPGACnV9lChoBmgJaA9DCOFgb2LIx3BAlIaUUpRoFU3gAWgWR0CWbuepn6EbdX2UKGgGaAloD0MIkIR9OwkxcUCUhpRSlGgVTZMBaBZHQJZvecz67/Z1fZQoaAZoCWgPQwgJGF3eHGZuQJSGlFKUaBVNoAFoFkdAlnFlKoQ4CXV9lChoBmgJaA9DCE9auKyCSXFAlIaUUpRoFU1iAWgWR0CWcaeo1k1/dX2UKGgGaAloD0MIwJMWLqsubkCUhpRSlGgVTYcBaBZHQJZx9w++ueV1fZQoaAZoCWgPQwjhB+dTx1NsQJSGlFKUaBVNogFoFkdAlnPHtOVPe3V9lChoBmgJaA9DCFD8GHPXSW1AlIaUUpRoFU1UAWgWR0CWdMKgIyCWdX2UKGgGaAloD0MIQzf7A2UNbUCUhpRSlGgVTUcBaBZHQJZ2adQO4G51fZQoaAZoCWgPQwgo9PqT+JxqQJSGlFKUaBVNWgFoFkdAlniMJx//enV9lChoBmgJaA9DCD5bBwf7um5AlIaUUpRoFU1oAWgWR0CWerTYNAkcdX2UKGgGaAloD0MIqRH6mXq7cECUhpRSlGgVTWMBaBZHQJZ6xLnLaEl1fZQoaAZoCWgPQwjImpFB7t5uQJSGlFKUaBVNYAFoFkdAlnuak2xY73V9lChoBmgJaA9DCGFvYkjOY29AlIaUUpRoFU1OAWgWR0CWfLraM72ddX2UKGgGaAloD0MI+N10yw7Nb0CUhpRSlGgVTWgBaBZHQJZ85gLJCBx1fZQoaAZoCWgPQwhhbYyd8FJuQJSGlFKUaBVNWQFoFkdAln1FGb1AaHV9lChoBmgJaA9DCLSSVnzDYXBAlIaUUpRoFU1eAWgWR0CWfgs+mm+CdX2UKGgGaAloD0MIAp1Jm6rfakCUhpRSlGgVTVIBaBZHQJZ+UWweNkx1fZQoaAZoCWgPQwiuug7VFHdwQJSGlFKUaBVNNAFoFkdAln7p3X7LuHV9lChoBmgJaA9DCJJdaRnpX3BAlIaUUpRoFU1UAWgWR0CWgHCiAUcodX2UKGgGaAloD0MI4PYEiS3lcECUhpRSlGgVTZsBaBZHQJaAkbEP1+R1fZQoaAZoCWgPQwiq8Gd4c3xwQJSGlFKUaBVNMAFoFkdAloEb5ZbILnV9lChoBmgJaA9DCKuvrgqUjXJAlIaUUpRoFU16AWgWR0CWgewuuievdX2UKGgGaAloD0MIB9LFphUXcUCUhpRSlGgVTV8BaBZHQJaDqyGBWgh1fZQoaAZoCWgPQwihvfp4aJJvQJSGlFKUaBVNYQFoFkdAloVNzKcNIHV9lChoBmgJaA9DCCbjGMmexmxAlIaUUpRoFU1wAWgWR0CWiD2aDwpfdX2UKGgGaAloD0MIrTJTWr9fcECUhpRSlGgVTU4BaBZHQJaItKkEcKh1fZQoaAZoCWgPQwi4zOmymIduQJSGlFKUaBVNXAFoFkdAloltW2gFo3V9lChoBmgJaA9DCGZn0TuVqWxAlIaUUpRoFU1dAWgWR0CWi390zTF3dX2UKGgGaAloD0MI/+xHikg0a0CUhpRSlGgVTXoBaBZHQJaLrTH80k51fZQoaAZoCWgPQwjbMAqCB1twQJSGlFKUaBVNYAFoFkdAlowJ1ie/YnV9lChoBmgJaA9DCNPddTZk6m5AlIaUUpRoFU13AWgWR0CWjJ0yxiXqdX2UKGgGaAloD0MIp+hILv/+bUCUhpRSlGgVTWkBaBZHQJai4/lhgE51fZQoaAZoCWgPQwjmBdhHZzRxQJSGlFKUaBVNegFoFkdAlqNkWRA8jnV9lChoBmgJaA9DCHU5JSCmWG5AlIaUUpRoFU1BAWgWR0CWo5Vzp5eJdX2UKGgGaAloD0MIHJqy049TcUCUhpRSlGgVTXwBaBZHQJakWUgSvkl1fZQoaAZoCWgPQwgxfa8hOHRtQJSGlFKUaBVNeAFoFkdAlqXpUPxx1nV9lChoBmgJaA9DCLhAguLHQW5AlIaUUpRoFU1yAWgWR0CWpl7tzCDVdX2UKGgGaAloD0MIbr98suK8bkCUhpRSlGgVTT8BaBZHQJanJ/pdKNB1fZQoaAZoCWgPQwh7SWO0jutrQJSGlFKUaBVNfwFoFkdAlqfGilBQenV9lChoBmgJaA9DCCqOA6+WWwBAlIaUUpRoFU0bAWgWR0CWqdBAOavzdX2UKGgGaAloD0MIX/BpTl4ybkCUhpRSlGgVTV4BaBZHQJasfcL0Bfd1fZQoaAZoCWgPQwjqz36kiF5xQJSGlFKUaBVNogFoFkdAlqzgfIS13XV9lChoBmgJaA9DCCAMPPceIHFAlIaUUpRoFU1cAWgWR0CWrYX3xnWbdX2UKGgGaAloD0MIiPccWA6EcECUhpRSlGgVTSsBaBZHQJavYe+23KB1fZQoaAZoCWgPQwj8cJAQZS5vQJSGlFKUaBVNdQFoFkdAlrDriyY5UHV9lChoBmgJaA9DCPwXCALk0G5AlIaUUpRoFU1vAWgWR0CWsSWMS9M9dX2UKGgGaAloD0MIA7aDEbtYcUCUhpRSlGgVTUoBaBZHQJaxhGWldkd1fZQoaAZoCWgPQwhxOPOr+WpxQJSGlFKUaBVNiQFoFkdAlrH0SElE7XV9lChoBmgJaA9DCJKzsKcd8EZAlIaUUpRoFU0tAWgWR0CWsvebutwKdX2UKGgGaAloD0MI66hqgij0bkCUhpRSlGgVTSYBaBZHQJaz9rWRRuV1fZQoaAZoCWgPQwjFkQciC5BwQJSGlFKUaBVNgQFoFkdAlrP+rQw9JXV9lChoBmgJaA9DCBecwd9vaXJAlIaUUpRoFU2sAWgWR0CWtDbUPQOXdX2UKGgGaAloD0MIgqj7AKQDckCUhpRSlGgVTS4BaBZHQJa017+kxh51fZQoaAZoCWgPQwhbP/1njbpwQJSGlFKUaBVNZQFoFkdAlrVqXfIjnnV9lChoBmgJaA9DCH0JFRyetnBAlIaUUpRoFU0yAWgWR0CWtuChvitJdX2UKGgGaAloD0MITiuFQK6ccECUhpRSlGgVTcoBaBZHQJa3Imois4l1fZQoaAZoCWgPQwgyj/zBwCMgQJSGlFKUaBVL6GgWR0CWucD0lJHzdX2UKGgGaAloD0MILJs5JLWEb0CUhpRSlGgVTWsBaBZHQJa7uoNutOp1fZQoaAZoCWgPQwiI2jaMgi1tQJSGlFKUaBVNXgFoFkdAlrvOrp7kXHV9lChoBmgJaA9DCBaHM7+acm9AlIaUUpRoFU0jAWgWR0CWvC7Wd3B6dX2UKGgGaAloD0MIMGKfAIpycECUhpRSlGgVTY4BaBZHQJa85MTN+sp1fZQoaAZoCWgPQwgvbM1W3phxQJSGlFKUaBVNAQFoFkdAlr3Gd3B55nV9lChoBmgJaA9DCA69xcN7om9AlIaUUpRoFU1YAWgWR0CWvtZBcAzYdX2UKGgGaAloD0MIumjIeNStcECUhpRSlGgVTXABaBZHQJbAVF8XvYx1fZQoaAZoCWgPQwhxyAbSxSVwQJSGlFKUaBVNXgFoFkdAlsCaWX1J2HV9lChoBmgJaA9DCCMShZZ1fXBAlIaUUpRoFU01AWgWR0CWwPalUIcBdX2UKGgGaAloD0MIvVXXoVpDckCUhpRSlGgVTVABaBZHQJbBSqtHQQd1fZQoaAZoCWgPQwjvjozV5v9tQJSGlFKUaBVNeQFoFkdAlsKabKA8S3V9lChoBmgJaA9DCDFe86qOr3BAlIaUUpRoFU1wAWgWR0CWxotW+49YdX2UKGgGaAloD0MIk4/dBYpbcUCUhpRSlGgVTSEBaBZHQJbJ3rdFfAt1fZQoaAZoCWgPQwhXQndJHKZwQJSGlFKUaBVNlwFoFkdAlsosRlHz6XV9lChoBmgJaA9DCDJVMCppHnBAlIaUUpRoFU3LAWgWR0CWykvDxb0OdX2UKGgGaAloD0MIukp315kxcUCUhpRSlGgVTWkBaBZHQJbMGrKeTV51fZQoaAZoCWgPQwh1IOup1dpsQJSGlFKUaBVNUQFoFkdAls/qOtGNJnV9lChoBmgJaA9DCNApyM/G6m1AlIaUUpRoFU1wAWgWR0CW0ElyBCladX2UKGgGaAloD0MIUpliDoIobECUhpRSlGgVTWMBaBZHQJbS4PWhAW11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd886a66e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd886a66ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd886a66f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd886a6a040>", "_build": "<function ActorCriticPolicy._build at 0x7fd886a6a0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd886a6a160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd886a6a1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd886a6a280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd886a6a310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd886a6a3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd886a6a430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd886a6a4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd886a60c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677080304477960797, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANM+Mz6UrWQ/Oge3PDQ/w77kAbQ9S7JgvAAAAAAAAAAA2rihPWbfkz+i7j8+GjkDvyu1zz29A9k8AAAAAAAAAADAX4c9322PP78XDT4df+u+3zmKPa7skz0AAAAAAAAAADP2szz5zCE/XhZnvQqJrb59SVU8SErlugAAAAAAAAAAwz+hPmLUHz9DMoO7fB3KvgyDNz5qMgy+AAAAAAAAAAAT01A++ff0Pq5+BrxBHJe+t9bOPZJN1jwAAAAAAAAAACqHjz7dxHC9BcGUOxN1R7pEZ8++RDcQuwAAgD8AAIA/ZigYPQqkbLtPn6M7pXKFPPd2BL3mZ2U9AACAPwAAgD+a48c8fCwMPmRIAr5tUVy+QSGuvHPP6jsAAAAAAAAAAKB1ij5RjeA+5qnfvYknnL66EdQ9lv0AvgAAAAAAAAAA+lY8vu0ViT7ucVE+h86Yvv0VGLyNhE49AAAAAAAAAABNxtU9m8P/PeK9mb0wfHy+F0NnvApjp70AAAAAAAAAAHOzNL5wEpQ+6uZoPvTXib4EgHU7hlEevAAAAAAAAAAA8z2wvVw3qD+guGy+Pcn+vu0KvL0uHpW9AAAAAAAAAADmXl49DnDCPwJFqD7ZVs49FacjvULbVjsAAAAAAAAAAE3Co717Kri6BkmHtHqRmS8+2ta5QvR4MwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIINJvXwd6TECUhpRSlIwBbJRL1owBdJRHQJe0GsfaHsV1fZQoaAZoCWgPQwigxVIkH+JwQJSGlFKUaBVNFAFoFkdAl7TNthuwYHV9lChoBmgJaA9DCBGLGHYYn3BAlIaUUpRoFU0lAWgWR0CXtQfzBhx6dX2UKGgGaAloD0MIqtVXVwUacUCUhpRSlGgVTQ8BaBZHQJe27awljVh1fZQoaAZoCWgPQwgLf4Y3K3NyQJSGlFKUaBVNKgFoFkdAl7eMlw97nnV9lChoBmgJaA9DCMKjjSPWuElAlIaUUpRoFUvTaBZHQJe4HfrKNhp1fZQoaAZoCWgPQwh5IR0ewvNwQJSGlFKUaBVNDQFoFkdAl7hDP4VRDXV9lChoBmgJaA9DCH7H8NiPN3BAlIaUUpRoFU0sAWgWR0CXuGsJ6Y3OdX2UKGgGaAloD0MIEyo4vGDXcECUhpRSlGgVTSABaBZHQJe4zAM2FWZ1fZQoaAZoCWgPQwimQjwSb2NyQJSGlFKUaBVL/2gWR0CXug84gieNdX2UKGgGaAloD0MIx4LCoEz8b0CUhpRSlGgVTQMBaBZHQJe6wwaisXB1fZQoaAZoCWgPQwgj2o6pe4lyQJSGlFKUaBVNIwFoFkdAl7rB55Z8r3V9lChoBmgJaA9DCGqhZHIqf3BAlIaUUpRoFU0SAWgWR0CXuuq4pc5bdX2UKGgGaAloD0MI4C9mS1a3cUCUhpRSlGgVTTcBaBZHQJe7nLA57w91fZQoaAZoCWgPQwjQ0hVsowxyQJSGlFKUaBVNGQFoFkdAl7upGKAJ9nV9lChoBmgJaA9DCD55WKg1J3JAlIaUUpRoFUv+aBZHQJe8mOKfnOl1fZQoaAZoCWgPQwh9JZASO3pwQJSGlFKUaBVNNAFoFkdAl70e3DvVmXV9lChoBmgJaA9DCEa0HVM3BHBAlIaUUpRoFU0eAWgWR0CXvcFa0QbudX2UKGgGaAloD0MIRE5fzxd7cECUhpRSlGgVTSABaBZHQJe/9X6qKgt1fZQoaAZoCWgPQwg8MIDw4WZyQJSGlFKUaBVNCwFoFkdAl8B25UcXFnV9lChoBmgJaA9DCFirdk0IIHJAlIaUUpRoFU0JAWgWR0CXwLdKNAC5dX2UKGgGaAloD0MIZmzoZj8ecECUhpRSlGgVTR4BaBZHQJfBTVlPJq91fZQoaAZoCWgPQwi0VrQ5zqttQJSGlFKUaBVNFQFoFkdAl8GVkMCtBHV9lChoBmgJaA9DCNkiaTf6o29AlIaUUpRoFU0DAWgWR0CXwmSHM2WIdX2UKGgGaAloD0MIVB9I3nnNcECUhpRSlGgVTRYBaBZHQJfD3uCwr2B1fZQoaAZoCWgPQwj3sBcKWKdxQJSGlFKUaBVNGgFoFkdAl8QCay8jA3V9lChoBmgJaA9DCKbtX1lpdGtAlIaUUpRoFU0AAWgWR0CXxCOyVv/BdX2UKGgGaAloD0MIp7OTwZElcECUhpRSlGgVTR0BaBZHQJfETfqHGjt1fZQoaAZoCWgPQwgHmWTkrABxQJSGlFKUaBVNEAFoFkdAl8SYR/ViF3V9lChoBmgJaA9DCP8fJ0wYl3FAlIaUUpRoFU0JAWgWR0CXxgxA0KqodX2UKGgGaAloD0MIVisTfqmPb0CUhpRSlGgVTRMBaBZHQJfHI52hZhd1fZQoaAZoCWgPQwgiMxe4fH9wQJSGlFKUaBVNQwFoFkdAl8eHbh3qzXV9lChoBmgJaA9DCHpTkQqjC3FAlIaUUpRoFU0QAWgWR0CXyV/EwWWQdX2UKGgGaAloD0MIjNtoAO+XbUCUhpRSlGgVTRYBaBZHQJfKKWZ7Xxx1fZQoaAZoCWgPQwif5Xlw90NuQJSGlFKUaBVNAQFoFkdAl8pG+oLofXV9lChoBmgJaA9DCMe8jjhkInNAlIaUUpRoFU0ZAWgWR0CXypSkj5bhdX2UKGgGaAloD0MI9diWAWdncECUhpRSlGgVTRoBaBZHQJfLdwS8J2N1fZQoaAZoCWgPQwiNmNnnMe5EQJSGlFKUaBVL12gWR0CXy6w8GLUDdX2UKGgGaAloD0MIlGx1OaXicECUhpRSlGgVS/FoFkdAl8xBI4EOiHV9lChoBmgJaA9DCCv7rgj+6W9AlIaUUpRoFU0gAWgWR0CXzHmzSkTIdX2UKGgGaAloD0MISKgZUsV5bkCUhpRSlGgVS/9oFkdAl8zNB8hLXnV9lChoBmgJaA9DCK3D0VV6Z3JAlIaUUpRoFU0MAWgWR0CXzcdc0LtvdX2UKGgGaAloD0MIsoNKXEd9cUCUhpRSlGgVTRoBaBZHQJfN4c0cfeV1fZQoaAZoCWgPQwizKOyiKHNxQJSGlFKUaBVL/2gWR0CX9wWepXIVdX2UKGgGaAloD0MIHHv2XKZGTkCUhpRSlGgVS+RoFkdAl/f1He7+UHV9lChoBmgJaA9DCFe0Oc6tl3BAlIaUUpRoFU0nAWgWR0CX+CBsANobdX2UKGgGaAloD0MIrRiuDoDMTUCUhpRSlGgVS9NoFkdAl/mydvsJIHV9lChoBmgJaA9DCA3eV+XChXBAlIaUUpRoFU0XAWgWR0CX+sr6LwWndX2UKGgGaAloD0MIh1J7EW0ibUCUhpRSlGgVTRkBaBZHQJf7Ol+EytV1fZQoaAZoCWgPQwi4AZ8fBpVyQJSGlFKUaBVNCAFoFkdAl/uKiCaqj3V9lChoBmgJaA9DCAt9sIzN2HFAlIaUUpRoFU0yAWgWR0CX+8B+4LCvdX2UKGgGaAloD0MI9rTDX5MvWkCUhpRSlGgVTegDaBZHQJf8g2jwhGJ1fZQoaAZoCWgPQwgrwk1GFXdwQJSGlFKUaBVNJgFoFkdAl/17VrhzeXV9lChoBmgJaA9DCLWjOEfdd3FAlIaUUpRoFU0oAWgWR0CX/cd+ocaPdX2UKGgGaAloD0MIr5emCLCncECUhpRSlGgVTQMBaBZHQJf994yGi6B1fZQoaAZoCWgPQwjsaYe/poBvQJSGlFKUaBVNJwFoFkdAl/4jTKDCg3V9lChoBmgJaA9DCJM16iFagXBAlIaUUpRoFU0kAWgWR0CX/yuWKMvRdX2UKGgGaAloD0MIX5hMFYyHY0CUhpRSlGgVTegDaBZHQJgASMNtqHp1fZQoaAZoCWgPQwjzO01mfMxwQJSGlFKUaBVNFwFoFkdAmAEF0o0ALnV9lChoBmgJaA9DCCsYldSJ9W5AlIaUUpRoFU0TAWgWR0CYAewh4dIYdX2UKGgGaAloD0MIXHfzVIdBckCUhpRSlGgVTS0BaBZHQJgCqs8xKxt1fZQoaAZoCWgPQwio4sYtpnByQJSGlFKUaBVNHwFoFkdAmAPb9ycTanV9lChoBmgJaA9DCFMiiV7GuXFAlIaUUpRoFU0MAWgWR0CYBOpSaVlgdX2UKGgGaAloD0MIX9IYrWO7cUCUhpRSlGgVTRABaBZHQJgFUJ/oaDR1fZQoaAZoCWgPQwi0ci8wK0VwQJSGlFKUaBVNKgFoFkdAmAVh4dIXj3V9lChoBmgJaA9DCHcv98nR8G9AlIaUUpRoFU0tAWgWR0CYBeFnZkCndX2UKGgGaAloD0MIJ0wYzQo7cUCUhpRSlGgVTRUBaBZHQJgGRLEk0Jp1fZQoaAZoCWgPQwjkafmBq0RxQJSGlFKUaBVNAwFoFkdAmAcgGwA2h3V9lChoBmgJaA9DCBjPoKE/t3FAlIaUUpRoFU0JAWgWR0CYBx4vN/vwdX2UKGgGaAloD0MIvwtbs5UBbkCUhpRSlGgVTRMBaBZHQJgHLQXyiEh1fZQoaAZoCWgPQwiLcf4mFP1RQJSGlFKUaBVLzWgWR0CYCFlLvkR0dX2UKGgGaAloD0MI+gj84ac6cECUhpRSlGgVTQwBaBZHQJgIjrmhdt51fZQoaAZoCWgPQwiVnX5QF3VvQJSGlFKUaBVNDwFoFkdAmAnLcoH9nHV9lChoBmgJaA9DCDenkgGgZXJAlIaUUpRoFU0TAWgWR0CYC7tNBWxRdX2UKGgGaAloD0MIVaaYg6DJUECUhpRSlGgVS8doFkdAmAxXerMkhXV9lChoBmgJaA9DCGGL3T6rT21AlIaUUpRoFU0AAWgWR0CYDRuwX668dX2UKGgGaAloD0MIoiQk0rZWcECUhpRSlGgVTSABaBZHQJgNHBInSfF1fZQoaAZoCWgPQwg6WP/ncKRyQJSGlFKUaBVNAQFoFkdAmA5/lQuVX3V9lChoBmgJaA9DCNKOG3438nBAlIaUUpRoFU0BAWgWR0CYD+LhJiAldX2UKGgGaAloD0MI1a90PjwvcUCUhpRSlGgVTSUBaBZHQJgRGovSMLp1fZQoaAZoCWgPQwgYQWMmEXlxQJSGlFKUaBVNDwFoFkdAmBFROHnEEXV9lChoBmgJaA9DCMkAUMWNU1lAlIaUUpRoFU3oA2gWR0CYEgRgqmTDdX2UKGgGaAloD0MIGm1VEll8cECUhpRSlGgVTREBaBZHQJgSl/mT1TR1fZQoaAZoCWgPQwhmg0wysupxQJSGlFKUaBVL/2gWR0CYE4CDmKZVdX2UKGgGaAloD0MIS633G60Gc0CUhpRSlGgVTSgBaBZHQJgTlZIQOFx1fZQoaAZoCWgPQwj84ee/hw9yQJSGlFKUaBVNKgFoFkdAmBO6OYIBzXV9lChoBmgJaA9DCMCvkSSIB29AlIaUUpRoFU0YAWgWR0CYFLqWTot+dX2UKGgGaAloD0MILXdmguEMRECUhpRSlGgVS8NoFkdAmBZLblA/s3V9lChoBmgJaA9DCIgs0sS7h3BAlIaUUpRoFUv2aBZHQJgXFekYXO51fZQoaAZoCWgPQwiztFNzeelwQJSGlFKUaBVNQQFoFkdAmBgbaM72c3V9lChoBmgJaA9DCAH5Eiq4v3BAlIaUUpRoFU0qAWgWR0CYGp+hXbM5dX2UKGgGaAloD0MIQl2kUJY+cECUhpRSlGgVTScBaBZHQJgbixVyWAx1fZQoaAZoCWgPQwjp0VRPZntuQJSGlFKUaBVL+WgWR0CYG+8vmHQAdX2UKGgGaAloD0MIMbJkjuUWbkCUhpRSlGgVTRYBaBZHQJgcIDs+mnB1fZQoaAZoCWgPQwgM6lvmdME+QJSGlFKUaBVLy2gWR0CYHC0Mw1zidX2UKGgGaAloD0MIIEHxYwwbcUCUhpRSlGgVS/NoFkdAmByi3LFGX3V9lChoBmgJaA9DCNB/D1675m5AlIaUUpRoFU0bAWgWR0CYHtbdJrckdX2UKGgGaAloD0MIzqrP1dYFcUCUhpRSlGgVTREBaBZHQJgfC9ugpSd1fZQoaAZoCWgPQwiME1/t6J1wQJSGlFKUaBVL7WgWR0CYHwuMuOCHdX2UKGgGaAloD0MIzojS3mAWcUCUhpRSlGgVTQABaBZHQJgfz7l7tzF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander_v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:37ed3c83b0844652df290c0e161ad60fef4cc64288f3f84d952e1ff5367939f4
3
- size 147423
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b7c9a353286fb631d1ad3742955ca67c6ca966b7dbce96847e50e85907ab717
3
+ size 147398
lunar_lander_v1/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b7cfdba60>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b7cfdbaf0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b7cfdbb80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b7cfdbc10>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f0b7cfdbca0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f0b7cfdbd30>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0b7cfdbdc0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b7cfdbe50>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f0b7cfdbee0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b7cfdbf70>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b7cfdf040>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b7cfdf0d0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f0b7cfd5b70>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1674007452553927438,
52
  "learning_rate": 0.0001,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDQQL5nq10/ylcgPvoGvr6/n3s8k0zkOwAAAAAAAAAAAJQVvB+ntj9uZ+y+BRSwPlmPKzyC/9M9AAAAAAAAAADNbA283imdPdlaAz4Nq8W9VwHhPbuR0D0AAAAAAAAAAI1rRr7+8po/LSupviX+qL4wN4S+MKxivAAAAAAAAAAAtk9RvkvN1D5Q7bU+RHI8vlYa/zoKRaY+AAAAAAAAAABzZrK9m3kmP9vG5Tt3syu++Tz5Oocwy70AAAAAAAAAAI2dn7348BQ/z/WIvYfLiL5k6NG8MiOavQAAAAAAAAAA83r5vYULmrlmmNeyQrVGseVynLs0+aQzAACAPwAAgD/A4qI94TuPO1pHsb1KOJy9UrEHvTx+AD0AAAAAAAAAAGbtjb5t2SI/BhAlPbyzn75Oy0q8FzwJPgAAAAAAAAAAmpARvQpKP7vhtCu8mw6MPME0wzwLv3C9AACAPwAAgD9Nc5c+JZ2DvTtCPjy9FAW7X5rgvi6QuLsAAIA/AACAPzoTJ75U3ng+AmYSPqDO4L0eDro92D91vQAAAAAAAAAAZtolPJecEjw+e3e8sjcVvnKrQ7qigAc9AAAAAAAAAABmLrk7nyv0u3tUJbyFopY8p4pJvbA5fD0AAIA/AACAP7NQzT2mmJY/OGZDPowsjr5FCiE+SquOPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,21 +70,21 @@
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy2YOSS21akCUhpRSlIwBbJRNPQKMAXSUR0CWRPS9du50dX2UKGgGaAloD0MIVn+EYQA0cECUhpRSlGgVTVcBaBZHQJZFTZZjhDR1fZQoaAZoCWgPQwhgArfu5jJyQJSGlFKUaBVNnQFoFkdAlkVZCa7Va3V9lChoBmgJaA9DCCDrqdVXKW9AlIaUUpRoFU1GAWgWR0CWRW62fChwdX2UKGgGaAloD0MIzzC1pc7EcECUhpRSlGgVTYoBaBZHQJZHRz+3pfR1fZQoaAZoCWgPQwiz8PW1LkUqwJSGlFKUaBVNFgFoFkdAlkhi+10DEHV9lChoBmgJaA9DCEmBBTBlXm5AlIaUUpRoFU2GAWgWR0CWSLGo73fydX2UKGgGaAloD0MIXrwft18Va0CUhpRSlGgVTXYBaBZHQJZJQWHk92Z1fZQoaAZoCWgPQwggs7PoHSlrQJSGlFKUaBVNhQFoFkdAlklOTNdJKHV9lChoBmgJaA9DCMCTFi4rPXBAlIaUUpRoFU1YAWgWR0CWSngtvn8sdX2UKGgGaAloD0MIo8ow7sZncECUhpRSlGgVTdUBaBZHQJZLT6ZYxL11fZQoaAZoCWgPQwhXtDnO7dxuQJSGlFKUaBVNZgFoFkdAlmD8gpz90nV9lChoBmgJaA9DCDQUd7xJ7m5AlIaUUpRoFU2FAWgWR0CWYb2cJ+lTdX2UKGgGaAloD0MIFEIHXYLocECUhpRSlGgVTVsBaBZHQJZh67I1cdJ1fZQoaAZoCWgPQwhmbOhmfyBsQJSGlFKUaBVNewFoFkdAlmVaRuCPIXV9lChoBmgJaA9DCP30nzU/lnFAlIaUUpRoFU2mAWgWR0CWZ7ZPl+3IdX2UKGgGaAloD0MIbFopBPKAcUCUhpRSlGgVTWcBaBZHQJZpFB0IToN1fZQoaAZoCWgPQwgB3Zcz221wQJSGlFKUaBVNggFoFkdAlmq8hcJMQHV9lChoBmgJaA9DCM43ontWu29AlIaUUpRoFU2LAWgWR0CWaxbmlqJudX2UKGgGaAloD0MImUuqthvZa0CUhpRSlGgVTXQBaBZHQJZsH8sMAm11fZQoaAZoCWgPQwhvn1VmSh5uQJSGlFKUaBVNaAFoFkdAlmz9alk6LnV9lChoBmgJaA9DCC8VG/N6XXBAlIaUUpRoFU2GAWgWR0CWbg4LThHcdX2UKGgGaAloD0MIGAXB41vucUCUhpRSlGgVTTsBaBZHQJZuDRtxdY51fZQoaAZoCWgPQwj+tbxyvbRxQJSGlFKUaBVNgAFoFkdAlm6qDPGACnV9lChoBmgJaA9DCOFgb2LIx3BAlIaUUpRoFU3gAWgWR0CWbuepn6EbdX2UKGgGaAloD0MIkIR9OwkxcUCUhpRSlGgVTZMBaBZHQJZvecz67/Z1fZQoaAZoCWgPQwgJGF3eHGZuQJSGlFKUaBVNoAFoFkdAlnFlKoQ4CXV9lChoBmgJaA9DCE9auKyCSXFAlIaUUpRoFU1iAWgWR0CWcaeo1k1/dX2UKGgGaAloD0MIwJMWLqsubkCUhpRSlGgVTYcBaBZHQJZx9w++ueV1fZQoaAZoCWgPQwjhB+dTx1NsQJSGlFKUaBVNogFoFkdAlnPHtOVPe3V9lChoBmgJaA9DCFD8GHPXSW1AlIaUUpRoFU1UAWgWR0CWdMKgIyCWdX2UKGgGaAloD0MIQzf7A2UNbUCUhpRSlGgVTUcBaBZHQJZ2adQO4G51fZQoaAZoCWgPQwgo9PqT+JxqQJSGlFKUaBVNWgFoFkdAlniMJx//enV9lChoBmgJaA9DCD5bBwf7um5AlIaUUpRoFU1oAWgWR0CWerTYNAkcdX2UKGgGaAloD0MIqRH6mXq7cECUhpRSlGgVTWMBaBZHQJZ6xLnLaEl1fZQoaAZoCWgPQwjImpFB7t5uQJSGlFKUaBVNYAFoFkdAlnuak2xY73V9lChoBmgJaA9DCGFvYkjOY29AlIaUUpRoFU1OAWgWR0CWfLraM72ddX2UKGgGaAloD0MI+N10yw7Nb0CUhpRSlGgVTWgBaBZHQJZ85gLJCBx1fZQoaAZoCWgPQwhhbYyd8FJuQJSGlFKUaBVNWQFoFkdAln1FGb1AaHV9lChoBmgJaA9DCLSSVnzDYXBAlIaUUpRoFU1eAWgWR0CWfgs+mm+CdX2UKGgGaAloD0MIAp1Jm6rfakCUhpRSlGgVTVIBaBZHQJZ+UWweNkx1fZQoaAZoCWgPQwiuug7VFHdwQJSGlFKUaBVNNAFoFkdAln7p3X7LuHV9lChoBmgJaA9DCJJdaRnpX3BAlIaUUpRoFU1UAWgWR0CWgHCiAUcodX2UKGgGaAloD0MI4PYEiS3lcECUhpRSlGgVTZsBaBZHQJaAkbEP1+R1fZQoaAZoCWgPQwiq8Gd4c3xwQJSGlFKUaBVNMAFoFkdAloEb5ZbILnV9lChoBmgJaA9DCKuvrgqUjXJAlIaUUpRoFU16AWgWR0CWgewuuievdX2UKGgGaAloD0MIB9LFphUXcUCUhpRSlGgVTV8BaBZHQJaDqyGBWgh1fZQoaAZoCWgPQwihvfp4aJJvQJSGlFKUaBVNYQFoFkdAloVNzKcNIHV9lChoBmgJaA9DCCbjGMmexmxAlIaUUpRoFU1wAWgWR0CWiD2aDwpfdX2UKGgGaAloD0MIrTJTWr9fcECUhpRSlGgVTU4BaBZHQJaItKkEcKh1fZQoaAZoCWgPQwi4zOmymIduQJSGlFKUaBVNXAFoFkdAloltW2gFo3V9lChoBmgJaA9DCGZn0TuVqWxAlIaUUpRoFU1dAWgWR0CWi390zTF3dX2UKGgGaAloD0MI/+xHikg0a0CUhpRSlGgVTXoBaBZHQJaLrTH80k51fZQoaAZoCWgPQwjbMAqCB1twQJSGlFKUaBVNYAFoFkdAlowJ1ie/YnV9lChoBmgJaA9DCNPddTZk6m5AlIaUUpRoFU13AWgWR0CWjJ0yxiXqdX2UKGgGaAloD0MIp+hILv/+bUCUhpRSlGgVTWkBaBZHQJai4/lhgE51fZQoaAZoCWgPQwjmBdhHZzRxQJSGlFKUaBVNegFoFkdAlqNkWRA8jnV9lChoBmgJaA9DCHU5JSCmWG5AlIaUUpRoFU1BAWgWR0CWo5Vzp5eJdX2UKGgGaAloD0MIHJqy049TcUCUhpRSlGgVTXwBaBZHQJakWUgSvkl1fZQoaAZoCWgPQwgxfa8hOHRtQJSGlFKUaBVNeAFoFkdAlqXpUPxx1nV9lChoBmgJaA9DCLhAguLHQW5AlIaUUpRoFU1yAWgWR0CWpl7tzCDVdX2UKGgGaAloD0MIbr98suK8bkCUhpRSlGgVTT8BaBZHQJanJ/pdKNB1fZQoaAZoCWgPQwh7SWO0jutrQJSGlFKUaBVNfwFoFkdAlqfGilBQenV9lChoBmgJaA9DCCqOA6+WWwBAlIaUUpRoFU0bAWgWR0CWqdBAOavzdX2UKGgGaAloD0MIX/BpTl4ybkCUhpRSlGgVTV4BaBZHQJasfcL0Bfd1fZQoaAZoCWgPQwjqz36kiF5xQJSGlFKUaBVNogFoFkdAlqzgfIS13XV9lChoBmgJaA9DCCAMPPceIHFAlIaUUpRoFU1cAWgWR0CWrYX3xnWbdX2UKGgGaAloD0MIiPccWA6EcECUhpRSlGgVTSsBaBZHQJavYe+23KB1fZQoaAZoCWgPQwj8cJAQZS5vQJSGlFKUaBVNdQFoFkdAlrDriyY5UHV9lChoBmgJaA9DCPwXCALk0G5AlIaUUpRoFU1vAWgWR0CWsSWMS9M9dX2UKGgGaAloD0MIA7aDEbtYcUCUhpRSlGgVTUoBaBZHQJaxhGWldkd1fZQoaAZoCWgPQwhxOPOr+WpxQJSGlFKUaBVNiQFoFkdAlrH0SElE7XV9lChoBmgJaA9DCJKzsKcd8EZAlIaUUpRoFU0tAWgWR0CWsvebutwKdX2UKGgGaAloD0MI66hqgij0bkCUhpRSlGgVTSYBaBZHQJaz9rWRRuV1fZQoaAZoCWgPQwjFkQciC5BwQJSGlFKUaBVNgQFoFkdAlrP+rQw9JXV9lChoBmgJaA9DCBecwd9vaXJAlIaUUpRoFU2sAWgWR0CWtDbUPQOXdX2UKGgGaAloD0MIgqj7AKQDckCUhpRSlGgVTS4BaBZHQJa017+kxh51fZQoaAZoCWgPQwhbP/1njbpwQJSGlFKUaBVNZQFoFkdAlrVqXfIjnnV9lChoBmgJaA9DCH0JFRyetnBAlIaUUpRoFU0yAWgWR0CWtuChvitJdX2UKGgGaAloD0MITiuFQK6ccECUhpRSlGgVTcoBaBZHQJa3Imois4l1fZQoaAZoCWgPQwgyj/zBwCMgQJSGlFKUaBVL6GgWR0CWucD0lJHzdX2UKGgGaAloD0MILJs5JLWEb0CUhpRSlGgVTWsBaBZHQJa7uoNutOp1fZQoaAZoCWgPQwiI2jaMgi1tQJSGlFKUaBVNXgFoFkdAlrvOrp7kXHV9lChoBmgJaA9DCBaHM7+acm9AlIaUUpRoFU0jAWgWR0CWvC7Wd3B6dX2UKGgGaAloD0MIMGKfAIpycECUhpRSlGgVTY4BaBZHQJa85MTN+sp1fZQoaAZoCWgPQwgvbM1W3phxQJSGlFKUaBVNAQFoFkdAlr3Gd3B55nV9lChoBmgJaA9DCA69xcN7om9AlIaUUpRoFU1YAWgWR0CWvtZBcAzYdX2UKGgGaAloD0MIumjIeNStcECUhpRSlGgVTXABaBZHQJbAVF8XvYx1fZQoaAZoCWgPQwhxyAbSxSVwQJSGlFKUaBVNXgFoFkdAlsCaWX1J2HV9lChoBmgJaA9DCCMShZZ1fXBAlIaUUpRoFU01AWgWR0CWwPalUIcBdX2UKGgGaAloD0MIvVXXoVpDckCUhpRSlGgVTVABaBZHQJbBSqtHQQd1fZQoaAZoCWgPQwjvjozV5v9tQJSGlFKUaBVNeQFoFkdAlsKabKA8S3V9lChoBmgJaA9DCDFe86qOr3BAlIaUUpRoFU1wAWgWR0CWxotW+49YdX2UKGgGaAloD0MIk4/dBYpbcUCUhpRSlGgVTSEBaBZHQJbJ3rdFfAt1fZQoaAZoCWgPQwhXQndJHKZwQJSGlFKUaBVNlwFoFkdAlsosRlHz6XV9lChoBmgJaA9DCDJVMCppHnBAlIaUUpRoFU3LAWgWR0CWykvDxb0OdX2UKGgGaAloD0MIukp315kxcUCUhpRSlGgVTWkBaBZHQJbMGrKeTV51fZQoaAZoCWgPQwh1IOup1dpsQJSGlFKUaBVNUQFoFkdAls/qOtGNJnV9lChoBmgJaA9DCNApyM/G6m1AlIaUUpRoFU1wAWgWR0CW0ElyBCladX2UKGgGaAloD0MIUpliDoIobECUhpRSlGgVTWMBaBZHQJbS4PWhAW11ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 248,
80
  "n_steps": 1024,
81
- "gamma": 0.999,
82
  "gae_lambda": 0.99,
83
  "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd886a66e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd886a66ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd886a66f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd886a6a040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd886a6a0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd886a6a160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd886a6a1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd886a6a280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd886a6a310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd886a6a3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd886a6a430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd886a6a4c0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd886a60c60>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1677080304477960797,
52
  "learning_rate": 0.0001,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANM+Mz6UrWQ/Oge3PDQ/w77kAbQ9S7JgvAAAAAAAAAAA2rihPWbfkz+i7j8+GjkDvyu1zz29A9k8AAAAAAAAAADAX4c9322PP78XDT4df+u+3zmKPa7skz0AAAAAAAAAADP2szz5zCE/XhZnvQqJrb59SVU8SErlugAAAAAAAAAAwz+hPmLUHz9DMoO7fB3KvgyDNz5qMgy+AAAAAAAAAAAT01A++ff0Pq5+BrxBHJe+t9bOPZJN1jwAAAAAAAAAACqHjz7dxHC9BcGUOxN1R7pEZ8++RDcQuwAAgD8AAIA/ZigYPQqkbLtPn6M7pXKFPPd2BL3mZ2U9AACAPwAAgD+a48c8fCwMPmRIAr5tUVy+QSGuvHPP6jsAAAAAAAAAAKB1ij5RjeA+5qnfvYknnL66EdQ9lv0AvgAAAAAAAAAA+lY8vu0ViT7ucVE+h86Yvv0VGLyNhE49AAAAAAAAAABNxtU9m8P/PeK9mb0wfHy+F0NnvApjp70AAAAAAAAAAHOzNL5wEpQ+6uZoPvTXib4EgHU7hlEevAAAAAAAAAAA8z2wvVw3qD+guGy+Pcn+vu0KvL0uHpW9AAAAAAAAAADmXl49DnDCPwJFqD7ZVs49FacjvULbVjsAAAAAAAAAAE3Co717Kri6BkmHtHqRmS8+2ta5QvR4MwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIINJvXwd6TECUhpRSlIwBbJRL1owBdJRHQJe0GsfaHsV1fZQoaAZoCWgPQwigxVIkH+JwQJSGlFKUaBVNFAFoFkdAl7TNthuwYHV9lChoBmgJaA9DCBGLGHYYn3BAlIaUUpRoFU0lAWgWR0CXtQfzBhx6dX2UKGgGaAloD0MIqtVXVwUacUCUhpRSlGgVTQ8BaBZHQJe27awljVh1fZQoaAZoCWgPQwgLf4Y3K3NyQJSGlFKUaBVNKgFoFkdAl7eMlw97nnV9lChoBmgJaA9DCMKjjSPWuElAlIaUUpRoFUvTaBZHQJe4HfrKNhp1fZQoaAZoCWgPQwh5IR0ewvNwQJSGlFKUaBVNDQFoFkdAl7hDP4VRDXV9lChoBmgJaA9DCH7H8NiPN3BAlIaUUpRoFU0sAWgWR0CXuGsJ6Y3OdX2UKGgGaAloD0MIEyo4vGDXcECUhpRSlGgVTSABaBZHQJe4zAM2FWZ1fZQoaAZoCWgPQwimQjwSb2NyQJSGlFKUaBVL/2gWR0CXug84gieNdX2UKGgGaAloD0MIx4LCoEz8b0CUhpRSlGgVTQMBaBZHQJe6wwaisXB1fZQoaAZoCWgPQwgj2o6pe4lyQJSGlFKUaBVNIwFoFkdAl7rB55Z8r3V9lChoBmgJaA9DCGqhZHIqf3BAlIaUUpRoFU0SAWgWR0CXuuq4pc5bdX2UKGgGaAloD0MI4C9mS1a3cUCUhpRSlGgVTTcBaBZHQJe7nLA57w91fZQoaAZoCWgPQwjQ0hVsowxyQJSGlFKUaBVNGQFoFkdAl7upGKAJ9nV9lChoBmgJaA9DCD55WKg1J3JAlIaUUpRoFUv+aBZHQJe8mOKfnOl1fZQoaAZoCWgPQwh9JZASO3pwQJSGlFKUaBVNNAFoFkdAl70e3DvVmXV9lChoBmgJaA9DCEa0HVM3BHBAlIaUUpRoFU0eAWgWR0CXvcFa0QbudX2UKGgGaAloD0MIRE5fzxd7cECUhpRSlGgVTSABaBZHQJe/9X6qKgt1fZQoaAZoCWgPQwg8MIDw4WZyQJSGlFKUaBVNCwFoFkdAl8B25UcXFnV9lChoBmgJaA9DCFirdk0IIHJAlIaUUpRoFU0JAWgWR0CXwLdKNAC5dX2UKGgGaAloD0MIZmzoZj8ecECUhpRSlGgVTR4BaBZHQJfBTVlPJq91fZQoaAZoCWgPQwi0VrQ5zqttQJSGlFKUaBVNFQFoFkdAl8GVkMCtBHV9lChoBmgJaA9DCNkiaTf6o29AlIaUUpRoFU0DAWgWR0CXwmSHM2WIdX2UKGgGaAloD0MIVB9I3nnNcECUhpRSlGgVTRYBaBZHQJfD3uCwr2B1fZQoaAZoCWgPQwj3sBcKWKdxQJSGlFKUaBVNGgFoFkdAl8QCay8jA3V9lChoBmgJaA9DCKbtX1lpdGtAlIaUUpRoFU0AAWgWR0CXxCOyVv/BdX2UKGgGaAloD0MIp7OTwZElcECUhpRSlGgVTR0BaBZHQJfETfqHGjt1fZQoaAZoCWgPQwgHmWTkrABxQJSGlFKUaBVNEAFoFkdAl8SYR/ViF3V9lChoBmgJaA9DCP8fJ0wYl3FAlIaUUpRoFU0JAWgWR0CXxgxA0KqodX2UKGgGaAloD0MIVisTfqmPb0CUhpRSlGgVTRMBaBZHQJfHI52hZhd1fZQoaAZoCWgPQwgiMxe4fH9wQJSGlFKUaBVNQwFoFkdAl8eHbh3qzXV9lChoBmgJaA9DCHpTkQqjC3FAlIaUUpRoFU0QAWgWR0CXyV/EwWWQdX2UKGgGaAloD0MIjNtoAO+XbUCUhpRSlGgVTRYBaBZHQJfKKWZ7Xxx1fZQoaAZoCWgPQwif5Xlw90NuQJSGlFKUaBVNAQFoFkdAl8pG+oLofXV9lChoBmgJaA9DCMe8jjhkInNAlIaUUpRoFU0ZAWgWR0CXypSkj5bhdX2UKGgGaAloD0MI9diWAWdncECUhpRSlGgVTRoBaBZHQJfLdwS8J2N1fZQoaAZoCWgPQwiNmNnnMe5EQJSGlFKUaBVL12gWR0CXy6w8GLUDdX2UKGgGaAloD0MIlGx1OaXicECUhpRSlGgVS/FoFkdAl8xBI4EOiHV9lChoBmgJaA9DCCv7rgj+6W9AlIaUUpRoFU0gAWgWR0CXzHmzSkTIdX2UKGgGaAloD0MISKgZUsV5bkCUhpRSlGgVS/9oFkdAl8zNB8hLXnV9lChoBmgJaA9DCK3D0VV6Z3JAlIaUUpRoFU0MAWgWR0CXzcdc0LtvdX2UKGgGaAloD0MIsoNKXEd9cUCUhpRSlGgVTRoBaBZHQJfN4c0cfeV1fZQoaAZoCWgPQwizKOyiKHNxQJSGlFKUaBVL/2gWR0CX9wWepXIVdX2UKGgGaAloD0MIHHv2XKZGTkCUhpRSlGgVS+RoFkdAl/f1He7+UHV9lChoBmgJaA9DCFe0Oc6tl3BAlIaUUpRoFU0nAWgWR0CX+CBsANobdX2UKGgGaAloD0MIrRiuDoDMTUCUhpRSlGgVS9NoFkdAl/mydvsJIHV9lChoBmgJaA9DCA3eV+XChXBAlIaUUpRoFU0XAWgWR0CX+sr6LwWndX2UKGgGaAloD0MIh1J7EW0ibUCUhpRSlGgVTRkBaBZHQJf7Ol+EytV1fZQoaAZoCWgPQwi4AZ8fBpVyQJSGlFKUaBVNCAFoFkdAl/uKiCaqj3V9lChoBmgJaA9DCAt9sIzN2HFAlIaUUpRoFU0yAWgWR0CX+8B+4LCvdX2UKGgGaAloD0MI9rTDX5MvWkCUhpRSlGgVTegDaBZHQJf8g2jwhGJ1fZQoaAZoCWgPQwgrwk1GFXdwQJSGlFKUaBVNJgFoFkdAl/17VrhzeXV9lChoBmgJaA9DCLWjOEfdd3FAlIaUUpRoFU0oAWgWR0CX/cd+ocaPdX2UKGgGaAloD0MIr5emCLCncECUhpRSlGgVTQMBaBZHQJf994yGi6B1fZQoaAZoCWgPQwjsaYe/poBvQJSGlFKUaBVNJwFoFkdAl/4jTKDCg3V9lChoBmgJaA9DCJM16iFagXBAlIaUUpRoFU0kAWgWR0CX/yuWKMvRdX2UKGgGaAloD0MIX5hMFYyHY0CUhpRSlGgVTegDaBZHQJgASMNtqHp1fZQoaAZoCWgPQwjzO01mfMxwQJSGlFKUaBVNFwFoFkdAmAEF0o0ALnV9lChoBmgJaA9DCCsYldSJ9W5AlIaUUpRoFU0TAWgWR0CYAewh4dIYdX2UKGgGaAloD0MIXHfzVIdBckCUhpRSlGgVTS0BaBZHQJgCqs8xKxt1fZQoaAZoCWgPQwio4sYtpnByQJSGlFKUaBVNHwFoFkdAmAPb9ycTanV9lChoBmgJaA9DCFMiiV7GuXFAlIaUUpRoFU0MAWgWR0CYBOpSaVlgdX2UKGgGaAloD0MIX9IYrWO7cUCUhpRSlGgVTRABaBZHQJgFUJ/oaDR1fZQoaAZoCWgPQwi0ci8wK0VwQJSGlFKUaBVNKgFoFkdAmAVh4dIXj3V9lChoBmgJaA9DCHcv98nR8G9AlIaUUpRoFU0tAWgWR0CYBeFnZkCndX2UKGgGaAloD0MIJ0wYzQo7cUCUhpRSlGgVTRUBaBZHQJgGRLEk0Jp1fZQoaAZoCWgPQwjkafmBq0RxQJSGlFKUaBVNAwFoFkdAmAcgGwA2h3V9lChoBmgJaA9DCBjPoKE/t3FAlIaUUpRoFU0JAWgWR0CYBx4vN/vwdX2UKGgGaAloD0MIvwtbs5UBbkCUhpRSlGgVTRMBaBZHQJgHLQXyiEh1fZQoaAZoCWgPQwiLcf4mFP1RQJSGlFKUaBVLzWgWR0CYCFlLvkR0dX2UKGgGaAloD0MI+gj84ac6cECUhpRSlGgVTQwBaBZHQJgIjrmhdt51fZQoaAZoCWgPQwiVnX5QF3VvQJSGlFKUaBVNDwFoFkdAmAnLcoH9nHV9lChoBmgJaA9DCDenkgGgZXJAlIaUUpRoFU0TAWgWR0CYC7tNBWxRdX2UKGgGaAloD0MIVaaYg6DJUECUhpRSlGgVS8doFkdAmAxXerMkhXV9lChoBmgJaA9DCGGL3T6rT21AlIaUUpRoFU0AAWgWR0CYDRuwX668dX2UKGgGaAloD0MIoiQk0rZWcECUhpRSlGgVTSABaBZHQJgNHBInSfF1fZQoaAZoCWgPQwg6WP/ncKRyQJSGlFKUaBVNAQFoFkdAmA5/lQuVX3V9lChoBmgJaA9DCNKOG3438nBAlIaUUpRoFU0BAWgWR0CYD+LhJiAldX2UKGgGaAloD0MI1a90PjwvcUCUhpRSlGgVTSUBaBZHQJgRGovSMLp1fZQoaAZoCWgPQwgYQWMmEXlxQJSGlFKUaBVNDwFoFkdAmBFROHnEEXV9lChoBmgJaA9DCMkAUMWNU1lAlIaUUpRoFU3oA2gWR0CYEgRgqmTDdX2UKGgGaAloD0MIGm1VEll8cECUhpRSlGgVTREBaBZHQJgSl/mT1TR1fZQoaAZoCWgPQwhmg0wysupxQJSGlFKUaBVL/2gWR0CYE4CDmKZVdX2UKGgGaAloD0MIS633G60Gc0CUhpRSlGgVTSgBaBZHQJgTlZIQOFx1fZQoaAZoCWgPQwj84ee/hw9yQJSGlFKUaBVNKgFoFkdAmBO6OYIBzXV9lChoBmgJaA9DCMCvkSSIB29AlIaUUpRoFU0YAWgWR0CYFLqWTot+dX2UKGgGaAloD0MILXdmguEMRECUhpRSlGgVS8NoFkdAmBZLblA/s3V9lChoBmgJaA9DCIgs0sS7h3BAlIaUUpRoFUv2aBZHQJgXFekYXO51fZQoaAZoCWgPQwiztFNzeelwQJSGlFKUaBVNQQFoFkdAmBgbaM72c3V9lChoBmgJaA9DCAH5Eiq4v3BAlIaUUpRoFU0qAWgWR0CYGp+hXbM5dX2UKGgGaAloD0MIQl2kUJY+cECUhpRSlGgVTScBaBZHQJgbixVyWAx1fZQoaAZoCWgPQwjp0VRPZntuQJSGlFKUaBVL+WgWR0CYG+8vmHQAdX2UKGgGaAloD0MIMbJkjuUWbkCUhpRSlGgVTRYBaBZHQJgcIDs+mnB1fZQoaAZoCWgPQwgM6lvmdME+QJSGlFKUaBVLy2gWR0CYHC0Mw1zidX2UKGgGaAloD0MIIEHxYwwbcUCUhpRSlGgVS/NoFkdAmByi3LFGX3V9lChoBmgJaA9DCNB/D1675m5AlIaUUpRoFU0bAWgWR0CYHtbdJrckdX2UKGgGaAloD0MIzqrP1dYFcUCUhpRSlGgVTREBaBZHQJgfC9ugpSd1fZQoaAZoCWgPQwiME1/t6J1wQJSGlFKUaBVL7WgWR0CYHwuMuOCHdX2UKGgGaAloD0MIzojS3mAWcUCUhpRSlGgVTQABaBZHQJgfz7l7tzF1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 372,
80
  "n_steps": 1024,
81
+ "gamma": 0.99,
82
  "gae_lambda": 0.99,
83
  "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 6,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
lunar_lander_v1/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:84f0a2a96899cfbd5825400300ae3cd50262e36e2c26d33d9bd4c42b45c9262c
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:776478922626ba07871ca6200e04bf4be0eb244112cf1c45486642ec5ed8e4e6
3
  size 87929
lunar_lander_v1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d709a81bcca38c85fc9ca934a9c8869581dcee958c19971267bf7de2496e60cd
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:986e6885480509b400d074c8ce55e2eb402610287a32c95226bdfdaec3554db0
3
  size 43393
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 167.01385739902474, "std_reward": 24.17164478803665, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T02:40:38.465093"}
 
1
+ {"mean_reward": 265.2016725066054, "std_reward": 18.44561158928154, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T16:03:51.810238"}