jakubkollar commited on
Commit
a3d29b2
1 Parent(s): 89a1cb5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 220.69 +/- 86.14
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -1249.72 +/- 687.82
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b496e1efeb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b496e1eff40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b496e200040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b496e2000d0>", "_build": "<function ActorCriticPolicy._build at 0x7b496e200160>", "forward": "<function ActorCriticPolicy.forward at 0x7b496e2001f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b496e200280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b496e200310>", "_predict": "<function ActorCriticPolicy._predict at 0x7b496e2003a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b496e200430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b496e2004c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b496e200550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b496e1f8b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718971648257561025, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAD0Jub4/7Hc/Yj/avqCb674whZW+qgREuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJe8glnh8+MAWyUTUQBjAF0lEdAotz9TYNAknV9lChoBkdAbhHEuQIUrWgHTRoBaAhHQKLdgBnzxw11fZQoaAZHQHDWNfsu3+doB01OAWgIR0Ci3hsjeKsNdX2UKGgGR0BxkAZ0jkdWaAdNcwFoCEdAot9x4SpR43V9lChoBkdAZjsLhrFfiWgHTegDaAhHQKLh8UkfLcN1fZQoaAZHQHExfp+tr9FoB00QAWgIR0Ci4nd2xIJ7dX2UKGgGR0BNC9mxt52RaAdL12gIR0Ci4tgKfFrEdX2UKGgGR0BwcpD1GsmwaAdNSgFoCEdAouQT2i+L33V9lChoBkdASAGbkOqeb2gHS99oCEdAouSDc/MW43V9lChoBkdAb+Ajlgc94mgHTQQBaAhHQKLlGBDohZB1fZQoaAZHQHIav9pAUtZoB014AWgIR0Ci5dH5zo2XdX2UKGgGR0Bw7EG4ZuQ7aAdNWAFoCEdAoucQEfT1CnV9lChoBkdAUOqp0fYBeWgHS8toCEdAoudtf5ULlXV9lChoBkdAbuv+uNgjQmgHTQ4BaAhHQKLn6IgNgBt1fZQoaAZHQG3NJZGKAJ9oB01kAWgIR0Ci6SxoqTbGdX2UKGgGR0BwpZQWN3nqaAdNDwFoCEdAoumtA/s3Q3V9lChoBkdAWOZPVNHpbGgHTegDaAhHQKLsMg6EJ0J1fZQoaAZHQG/ySpiqhlFoB00pAWgIR0Ci7MIt+TePdX2UKGgGR0Bw3z+XJHRUaAdNlQFoCEdAou1+zIFNcnV9lChoBkdAchXUdaMaTGgHTSUBaAhHQKLuo4mTkhl1fZQoaAZHQGyF0xVQyh1oB00dAWgIR0Ci7zLNW2gGdX2UKGgGR0BwTycDr7fpaAdNNQFoCEdAou/E6DGtIXV9lChoBkdAcj0EcsDnvGgHTUABaAhHQKLxf9hqj8F1fZQoaAZHQG/1vPcBU71oB00hAWgIR0Ci8jRNh3JQdX2UKGgGR0Buo8lsxfv4aAdNmgFoCEdAovNFRYRuj3V9lChoBkdAcgjrRjSXt2gHTUkBaAhHQKL1L3PiT+x1fZQoaAZHQHKbt7SiM5xoB01hAWgIR0Ci9hx2jfvXdX2UKGgGR0BvIe1v2oNvaAdNRQFoCEdAova110T103V9lChoBkdAbyCF2V3Ux2gHTZ8BaAhHQKL4JJ3gUDd1fZQoaAZHQHDbG0eEIxBoB01CAWgIR0Ci+L2oFV1fdX2UKGgGR0Bw4v7yhBZ7aAdNGQFoCEdAovlJuCPIXHV9lChoBkdAcf595Qgs9WgHTQ4BaAhHQKL6atihFmZ1fZQoaAZHQG+QcZtNzsBoB00/AWgIR0Ci+wHuy/sWdX2UKGgGR0BzNdmSQo1DaAdNPQFoCEdAovue7pV0cXV9lChoBkdATgbcuanaWWgHS9toCEdAovwGC/XXiHV9lChoBkdAcT1yUs4DLmgHTQEBaAhHQKL9HS6UaAF1fZQoaAZHQHC0OFxn3+NoB0v6aAhHQKL9mSMcZLt1fZQoaAZHQHHBAKneiztoB00MAWgIR0Ci/hsunMt9dX2UKGgGR0BtconMMZxaaAdNOwFoCEdAov9KUornT3V9lChoBkdAUXjW9US7G2gHS9VoCEdAov+62MKkVXV9lChoBkdAbsadd3SrpGgHTQoBaAhHQKMAN2EkB0Z1fZQoaAZHQHBrWLpA2Q5oB03wAmgIR0CjAlaY3Ns4dX2UKGgGR0BvMmDrZ8KHaAdNHAFoCEdAowLV+b3GoHV9lChoBkdAcUhCxeLNwGgHS/hoCEdAowNMYyfthXV9lChoBkdAcNGun/DLsGgHTToBaAhHQKMEilb/wRZ1fZQoaAZHQGL9cAzYVZdoB03oA2gIR0CjBxS00FbFdX2UKGgGR0AxsKb8WKuTaAdLxmgIR0CjB3Th5xBFdX2UKGgGR0ByQs6BAfMfaAdNIgFoCEdAowgGWdEsrnV9lChoBkdAccqFlTWGy2gHTSEBaAhHQKMIkQ/X5Fh1fZQoaAZHQHI5LowEhaFoB0v8aAhHQKMJsG1x82J1fZQoaAZHQG4Xt4RmK65oB00NAWgIR0CjCl0z0pVkdX2UKGgGR0Bhl/DgqEvkaAdN6ANoCEdAow3qiyprDnV9lChoBkdAbvBjMmnfmGgHTTEBaAhHQKMOviCJ40N1fZQoaAZHQEWKTYdyT6loB0vaaAhHQKMPV5GjKxN1fZQoaAZHQHIQF50KZ2JoB00kAWgIR0CjERgWac7RdX2UKGgGR0BxCNV4oqkNaAdNHQFoCEdAoxGcZxaPjnV9lChoBkdAchREAHVwxWgHTRsBaAhHQKMSKhX8wYd1fZQoaAZHQHIgkl3Qla9oB00NAWgIR0CjEqopYs/ZdX2UKGgGR0BxxUvZh8YyaAdNLAFoCEdAoxPdATqSo3V9lChoBkdAcRes0YTCcmgHTSMBaAhHQKMUay/sVtZ1fZQoaAZHQHFGe+dsi0RoB00sAWgIR0CjFPbMHKOldX2UKGgGR0BvwFrbg0j1aAdNJgFoCEdAoxYyWu5jIHV9lChoBkdAcICBj4Hoo2gHTTwBaAhHQKMWyK0D2al1fZQoaAZHQFD4vB7/n4hoB0vTaAhHQKMXLbY9Pk91fZQoaAZHQG9qQSamXPZoB00uAWgIR0CjF8KNIbwSdX2UKGgGR0Bw6bvqkdmyaAdNAAFoCEdAoxjfitJWenV9lChoBkdAcNdoJRfnfWgHTRgBaAhHQKMZZBj4Hop1fZQoaAZHQHAbipaRp11oB00HAWgIR0CjGd9pItlJdX2UKGgGR0BvY4M8YAKfaAdNJQFoCEdAoxpwm/nGKnV9lChoBkdAPayLdepn6GgHS9FoCEdAoxuAzN2TxHV9lChoBkdAcWvGo73fymgHTUgBaAhHQKMcJm9xp+N1fZQoaAZHQF7mVpsXSBtoB03oA2gIR0CjHrObAk9mdX2UKGgGR0BwF16iTMaCaAdNFwFoCEdAox87EpAlfXV9lChoBkdAcmE1ct5D7mgHTTYBaAhHQKMfz7sv7Fd1fZQoaAZHQHJ7YS13MZBoB00QAWgIR0CjIPJWV/tqdX2UKGgGR0Bxu9nEl3QlaAdNSgFoCEdAoyGNS619fHV9lChoBkdAboT4qwyIpGgHTRoBaAhHQKMiFRjz7Mx1fZQoaAZHQGQAVzp5eJJoB03oA2gIR0CjJJNqpLmIdX2UKGgGR0BPiIsyzollaAdLvWgIR0CjJOt+CsfadX2UKGgGR0BwdsaAFxGUaAdNBwFoCEdAoyaCs6q82HV9lChoBkdAcXYJmukk8mgHTUABaAhHQKMnRSE12q11fZQoaAZHQHEnobCJoCdoB000AWgIR0CjKAglOXVtdX2UKGgGR0ByWLyCnP3SaAdNYAFoCEdAoynzwtrbg3V9lChoBkdAcJf6eXiR4mgHTUoBaAhHQKMq51aGHpN1fZQoaAZHQHHicGs3hn9oB006AWgIR0CjK8Du0CzUdX2UKGgGR0BwnNIiC8ODaAdNAwFoCEdAoyzm1ndwenV9lChoBkdAbHB2g3974WgHTQABaAhHQKMtZCaZx711fZQoaAZHQG3IyRB/qgRoB000AWgIR0CjLfSl3yI6dX2UKGgGR0ByLDUZvUBoaAdNYgFoCEdAoy6a8g6ltXV9lChoBkdAXYbeCTUy6GgHTegDaAhHQKMxPDlYEGJ1fZQoaAZHQD+s8U21lXloB0vAaAhHQKMyNlIVdop1fZQoaAZHQGVzjWTX8O1oB03oA2gIR0CjNMA7HQyAdX2UKGgGR0ByWxQXQ+lkaAdNOAFoCEdAozVW3z+WGHV9lChoBkdAR4mCAc1fmmgHS7ZoCEdAozWqqn3tbHV9lChoBkdAYeaWLxZuAWgHTegDaAhHQKM4H4bCJoF1fZQoaAZHQHF0UfDDTBtoB006AWgIR0CjOLKKpDNRdX2UKGgGR0BP83Td+G47aAdLzmgIR0CjObYcNpdsdX2UKGgGR0BxYFYB/7SBaAdNNAFoCEdAozpKRdQfp3V9lChoBkdAcZKjFhoduGgHTQwBaAhHQKM6xZ13dKx1fZQoaAZHQHDI0F8ohIRoB00nAWgIR0CjO1OerdWRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4304, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQPuO1jD/lgnDzM7OwqfLMJowDaW5jlIoQqc559d9Hlc9OsNuI5sCRGHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQkEy8pmB81KOBdfjF90swX4wDaW5jlIoQPc/L02/E2g7GPbY99UL5RHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF+SNyiAB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d83c62c5bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d83c62c5c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d83c62c5cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d83c62c5d80>", "_build": "<function ActorCriticPolicy._build at 0x7d83c62c5e10>", "forward": "<function ActorCriticPolicy.forward at 0x7d83c62c5ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d83c62c5f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d83c62c5fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d83c62c6050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d83c62c60e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d83c62c6170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d83c62c6200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d83c643b700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10240, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718985022765599351, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGa0vb2yMyg/a4trvrGbYb92lGw+Tq/sPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGMpwazeGfyMAWyUS02MAXSUR0Ak2ApazNUwdX2UKGgGR8BZbnN1QqI8aAdLWWgIR0AlA2F36hxpdX2UKGgGR8BXxU0BOpKjaAdLP2gIR0AlIj4YaYNRdX2UKGgGR8B3p8HiWE9MaAdLXWgIR0AlUisXBP9DdX2UKGgGR8BepKwhW5pbaAdLd2gIR0Alk6PKdQO4dX2UKGgGR8BUDcrRSgoPaAdLO2gIR0Alr6E8JUo8dX2UKGgGR8BZfIiosI3SaAdLTWgIR0Al1wVj7Q9idX2UKGgGR8BWF2b9ZRsNaAdLQWgIR0Amq3MINVindX2UKGgGR8BEZu0kWykcaAdLQWgIR0AmzyyUs4DLdX2UKGgGR8BVve7lJYknaAdLRWgIR0Am8tJWeYlZdX2UKGgGR8Bi4Ft0mtyQaAdLVmgIR0AnHbCaZx7zdX2UKGgGR8BaxAmNR3vAaAdLgWgIR0AnYgwoLG70dX2UKGgGR8BmbWykbgjyaAdLZ2gIR0Anm7g88s+WdX2UKGgGR8B0Ip2St/4JaAdLYWgIR0AnysGPgeijdX2UKGgGR8B0PaZ4Oc2BaAdLZWgIR0An+wnH/95ydX2UKGgGR8Btf2X9itq6aAdLUGgIR0AoJ0knkT6BdX2UKGgGR8BvT/u9eyAyaAdLd2gIR0AoYQ3gk1MudX2UKGgGR8BZiy9ugpSaaAdLVGgIR0AoiSZBsyi3dX2UKGgGR8Bvb1vS+g14aAdLS2gIR0ApUXJHRTjvdX2UKGgGR8BxAQGcFyJbaAdLZmgIR0ApguV5a/yodX2UKGgGR8BaJenuRcNZaAdLTmgIR0ApsDjBEa2ndX2UKGgGR8Bek+izsyBTaAdLYWgIR0Ap38AJb+tKdX2UKGgGR8BKk+W4Vh1DaAdLP2gIR0Ap/tfG+9J0dX2UKGgGR8Bw7t+iJwbVaAdLWGgIR0AqKqYJE6T4dX2UKGgGR8B88bfQ8fV7aAdLd2gIR0AqZk6Lfk3kdX2UKGgGR8ByNKHck+otaAdLZ2gIR0AqmfA9FF2FdX2UKGgGR0AWhBqsU7CBaAdLQ2gIR0Aqu64Ds+mndX2UKGgGR8B0y4al1r6+aAdLbGgIR0Aq85yU9pyqdX2UKGgGR8BhokFhXr+paAdLdWgIR0ArLl/YraufdX2UKGgGR8BhU60hNdqtaAdLhmgIR0AsHnLaEi+tdX2UKGgGR8AvCZRbbDdhaAdLYmgIR0AsTzoUzsQedX2UKGgGR8BMkJIDoyKvaAdLd2gIR0AsjCojv/ipdX2UKGgGR8BdT5aA4GUwaAdLZGgIR0Asuuyu6mO3dX2UKGgGR8BhLCjWTX8PaAdLUmgIR0As5JoTPBzndX2UKGgGR8BiHFnTRYzSaAdLR2gIR0AtBlYEGJN1dX2UKGgGR8Bwok8JUo8ZaAdLU2gIR0AtNBWxQizLdX2UKGgGR8BGiqesgdOqaAdLW2gIR0AtYT/Q0GeMdX2UKGgGR8Bm1M+gUUO/aAdLaWgIR0AtlQ+EAYHgdX2UKGgGR8BnYlcnmaH9aAdLf2gIR0At17N0NjLCdX2UKGgGR8BpYxb8m8dxaAdLZ2gIR0AuqIMSbpeNdX2UKGgGR8BawYXKr7wbaAdLZ2gIR0Au29qUNayKdX2UKGgGR8Bba4dU83dcaAdLb2gIR0AvFCemNzbOdX2UKGgGR8BY85e3QUpNaAdLZmgIR0AvR5uZTho/dX2UKGgGR8BTAk74i5d4aAdLOmgIR0AvZE2pAD7qdX2UKGgGR8Bc3K5f+jubaAdLVWgIR0AvjuXNTtLMdX2UKGgGR8B0e8cR15jZaAdLbWgIR0AvyUaAFxGUdX2UKGgGR8BZaLEDQqqfaAdLXGgIR0Av+O+ZgG8mdX2UKGgGR8BrjrlzU7SzaAdLZ2gIR0AwFpD/lyR0dX2UKGgGR8Be3vXPJJXhaAdLbmgIR0AwMlhPTG5udX2UKGgGR8BZVs/hVENOaAdLXmgIR0AwSKpT/ACXdX2UKGgGR8BttRgqmTC+aAdLnWgIR0Aw2Q66reZYdX2UKGgGR8BdEeE/SpiraAdLSWgIR0Aw8nzg/C66dX2UKGgGR8BgJ4ob4rSWaAdLf2gIR0AxIWmxdIGydX2UKGgGR8BpF1nVXmvGaAdLq2gIR0AxWjqOcUdrdX2UKGgGR8Ba6k/nnuAqaAdLaWgIR0AxellK9PDYdX2UKGgGR8BSwhoduHeraAdLOmgIR0Axjh2GIsRQdX2UKGgGR8Bq89ph4MWoaAdLamgIR0AxsoZydWhidX2UKGgGR8B3p1hpg1FZaAdLYmgIR0Ax0f1pTMq0dX2UKGgGR8BTfOdbxEv1aAdLRmgIR0Ax58dxQzk7dX2UKGgGR8BdZhJqZc9oaAdLbGgIR0Ayf8+RoysTdX2UKGgGR8BfEJR8+iaiaAdLcWgIR0Ayqz0Yj0L/dX2UKGgGR8BurTmU4aP0aAdLZ2gIR0AyzyI55qubdX2UKGgGR8B8gDEjxCpnaAdLZWgIR0Ay8rcTJyQxdX2UKGgGR8BqUDSCvovBaAdLSGgIR0AzD2CuloDgdX2UKGgGR8A6NdRiw0O3aAdLSmgIR0AzKRYRujyndX2UKGgGR8BuZT8Nx2jgaAdLaGgIR0AzSt2cJ+lTdX2UKGgGR8BTgjgEU0vXaAdLQmgIR0AzYRKYiPhidX2UKGgGR8BzC7gTAWSEaAdLe2gIR0AzjLlmvnr6dX2UKGgGR8BTm6BZpztDaAdLQGgIR0AzoraufVZtdX2UKGgGR8BuXPG2kSElaAdLhWgIR0Az1gqmTC+DdX2UKGgGR8BlgtPLxI8RaAdLd2gIR0A0gDM/yGzsdX2UKGgGR8Bw/4QFs54oaAdLeGgIR0A0p0aZQYUGdX2UKGgGR8Bibcjopx3naAdLUWgIR0A0u/sVtXPrdX2UKGgGR8BxKqvQnhKlaAdLY2gIR0A01LwnYxtYdX2UKGgGR8BWtoGY8dPtaAdLRWgIR0A05Vx0dRzjdX2UKGgGR8Be3d7a7EpBaAdLYWgIR0A0/Vv/BFd+dX2UKGgGR8BeULLhaTwEaAdLRmgIR0A1DiUxEfDDdX2UKGgGR8BjnA9q1w5vaAdLbWgIR0A1KLXtjTa1dX2UKGgGR8B2+weii7CjaAdLZWgIR0A1RKhL5AQhdX2UKGgGR8BeBqFmFrVOaAdLWmgIR0A1WuU2UB4mdX2UKGgGR8BMO+xW1c+raAdLQ2gIR0A1a8r7O3UhdX2UKGgGR8B0i/WMCLdfaAdLa2gIR0A12hqj8DSxdX2UKGgGR8BhzX1J17pnaAdLbmgIR0A19fDDTBqLdX2UKGgGR8Beb48U21lYaAdLY2gIR0A2DZLZi/fwdX2UKGgGR8BgX5vUBnzyaAdLYGgIR0A2Jbhm5DqodX2UKGgGR8Bv1cMy8BdVaAdLamgIR0A2QdT5wfhddX2UKGgGR8BrMsmhM8HOaAdLgWgIR0A2YWtlqagFdX2UKGgGR8BgNTHEMspYaAdLTGgIR0A2dFj/dZaFdX2UKGgGR8BWbum78Nx3aAdLYGgIR0A2i46fapPzdX2UKGgGR8Bnpg2dd3SsaAdLnGgIR0A2sVFx4ptrdX2UKGgGR8Bxa9LoOhCdaAdLZ2gIR0A3HWN3np0PdX2UKGgGR8BiRvcQAdXDaAdLYWgIR0A3Np8WsRxtdX2UKGgGR8BnQP5aePJaaAdLa2gIR0A3VUmD15B1dX2UKGgGR8B2E17MPjGUaAdLZWgIR0A3b8scyWRjdX2UKGgGR8Bl+ls+FDfFaAdLUGgIR0A3g/Efkmx/dX2UKGgGR8B7s07q6e5GaAdLfGgIR0A3o8274BV/dX2UKGgGR8B3C5k9U0emaAdLZGgIR0A3vahpQDV6dX2UKGgGR8BunxLPD50saAdLjGgIR0A34GgSOBDpdX2UKGgGR8BZ75YYBNmEaAdLV2gIR0A39T0xubZwdX2UKGgGR8BlWqosI3R5aAdLaGgIR0A4DnUDuBtldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQIy71q3tGEgwsiPd2TtipU4wDaW5jlIoRAQ2CbDyFbNUUd2+Y+QTbiQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRceotdzOYAr9h9bA6jNthqQCMA2luY5SKEBE1FOBupsua0/Vrac4m+VV1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBUdn0+8AdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be92902bed1492fc32898ea768ddcf2983b5ee7ef1340da253882167714f62ac
3
- size 147451
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e414714525ce2fc26f865690ca36d312ef83e3bb52a7d8907aa8db5b11bc44
3
+ size 147330
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7b496e1efeb0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b496e1eff40>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b496e200040>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b496e2000d0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7b496e200160>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7b496e2001f0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b496e200280>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b496e200310>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7b496e2003a0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b496e200430>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b496e2004c0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b496e200550>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7b496e1f8b00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1000448,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1718971648257561025,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAD0Jub4/7Hc/Yj/avqCb674whZW+qgREuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,20 +41,20 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.00044800000000000395,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJe8glnh8+MAWyUTUQBjAF0lEdAotz9TYNAknV9lChoBkdAbhHEuQIUrWgHTRoBaAhHQKLdgBnzxw11fZQoaAZHQHDWNfsu3+doB01OAWgIR0Ci3hsjeKsNdX2UKGgGR0BxkAZ0jkdWaAdNcwFoCEdAot9x4SpR43V9lChoBkdAZjsLhrFfiWgHTegDaAhHQKLh8UkfLcN1fZQoaAZHQHExfp+tr9FoB00QAWgIR0Ci4nd2xIJ7dX2UKGgGR0BNC9mxt52RaAdL12gIR0Ci4tgKfFrEdX2UKGgGR0BwcpD1GsmwaAdNSgFoCEdAouQT2i+L33V9lChoBkdASAGbkOqeb2gHS99oCEdAouSDc/MW43V9lChoBkdAb+Ajlgc94mgHTQQBaAhHQKLlGBDohZB1fZQoaAZHQHIav9pAUtZoB014AWgIR0Ci5dH5zo2XdX2UKGgGR0Bw7EG4ZuQ7aAdNWAFoCEdAoucQEfT1CnV9lChoBkdAUOqp0fYBeWgHS8toCEdAoudtf5ULlXV9lChoBkdAbuv+uNgjQmgHTQ4BaAhHQKLn6IgNgBt1fZQoaAZHQG3NJZGKAJ9oB01kAWgIR0Ci6SxoqTbGdX2UKGgGR0BwpZQWN3nqaAdNDwFoCEdAoumtA/s3Q3V9lChoBkdAWOZPVNHpbGgHTegDaAhHQKLsMg6EJ0J1fZQoaAZHQG/ySpiqhlFoB00pAWgIR0Ci7MIt+TePdX2UKGgGR0Bw3z+XJHRUaAdNlQFoCEdAou1+zIFNcnV9lChoBkdAchXUdaMaTGgHTSUBaAhHQKLuo4mTkhl1fZQoaAZHQGyF0xVQyh1oB00dAWgIR0Ci7zLNW2gGdX2UKGgGR0BwTycDr7fpaAdNNQFoCEdAou/E6DGtIXV9lChoBkdAcj0EcsDnvGgHTUABaAhHQKLxf9hqj8F1fZQoaAZHQG/1vPcBU71oB00hAWgIR0Ci8jRNh3JQdX2UKGgGR0Buo8lsxfv4aAdNmgFoCEdAovNFRYRuj3V9lChoBkdAcgjrRjSXt2gHTUkBaAhHQKL1L3PiT+x1fZQoaAZHQHKbt7SiM5xoB01hAWgIR0Ci9hx2jfvXdX2UKGgGR0BvIe1v2oNvaAdNRQFoCEdAova110T103V9lChoBkdAbyCF2V3Ux2gHTZ8BaAhHQKL4JJ3gUDd1fZQoaAZHQHDbG0eEIxBoB01CAWgIR0Ci+L2oFV1fdX2UKGgGR0Bw4v7yhBZ7aAdNGQFoCEdAovlJuCPIXHV9lChoBkdAcf595Qgs9WgHTQ4BaAhHQKL6atihFmZ1fZQoaAZHQG+QcZtNzsBoB00/AWgIR0Ci+wHuy/sWdX2UKGgGR0BzNdmSQo1DaAdNPQFoCEdAovue7pV0cXV9lChoBkdATgbcuanaWWgHS9toCEdAovwGC/XXiHV9lChoBkdAcT1yUs4DLmgHTQEBaAhHQKL9HS6UaAF1fZQoaAZHQHC0OFxn3+NoB0v6aAhHQKL9mSMcZLt1fZQoaAZHQHHBAKneiztoB00MAWgIR0Ci/hsunMt9dX2UKGgGR0BtconMMZxaaAdNOwFoCEdAov9KUornT3V9lChoBkdAUXjW9US7G2gHS9VoCEdAov+62MKkVXV9lChoBkdAbsadd3SrpGgHTQoBaAhHQKMAN2EkB0Z1fZQoaAZHQHBrWLpA2Q5oB03wAmgIR0CjAlaY3Ns4dX2UKGgGR0BvMmDrZ8KHaAdNHAFoCEdAowLV+b3GoHV9lChoBkdAcUhCxeLNwGgHS/hoCEdAowNMYyfthXV9lChoBkdAcNGun/DLsGgHTToBaAhHQKMEilb/wRZ1fZQoaAZHQGL9cAzYVZdoB03oA2gIR0CjBxS00FbFdX2UKGgGR0AxsKb8WKuTaAdLxmgIR0CjB3Th5xBFdX2UKGgGR0ByQs6BAfMfaAdNIgFoCEdAowgGWdEsrnV9lChoBkdAccqFlTWGy2gHTSEBaAhHQKMIkQ/X5Fh1fZQoaAZHQHI5LowEhaFoB0v8aAhHQKMJsG1x82J1fZQoaAZHQG4Xt4RmK65oB00NAWgIR0CjCl0z0pVkdX2UKGgGR0Bhl/DgqEvkaAdN6ANoCEdAow3qiyprDnV9lChoBkdAbvBjMmnfmGgHTTEBaAhHQKMOviCJ40N1fZQoaAZHQEWKTYdyT6loB0vaaAhHQKMPV5GjKxN1fZQoaAZHQHIQF50KZ2JoB00kAWgIR0CjERgWac7RdX2UKGgGR0BxCNV4oqkNaAdNHQFoCEdAoxGcZxaPjnV9lChoBkdAchREAHVwxWgHTRsBaAhHQKMSKhX8wYd1fZQoaAZHQHIgkl3Qla9oB00NAWgIR0CjEqopYs/ZdX2UKGgGR0BxxUvZh8YyaAdNLAFoCEdAoxPdATqSo3V9lChoBkdAcRes0YTCcmgHTSMBaAhHQKMUay/sVtZ1fZQoaAZHQHFGe+dsi0RoB00sAWgIR0CjFPbMHKOldX2UKGgGR0BvwFrbg0j1aAdNJgFoCEdAoxYyWu5jIHV9lChoBkdAcICBj4Hoo2gHTTwBaAhHQKMWyK0D2al1fZQoaAZHQFD4vB7/n4hoB0vTaAhHQKMXLbY9Pk91fZQoaAZHQG9qQSamXPZoB00uAWgIR0CjF8KNIbwSdX2UKGgGR0Bw6bvqkdmyaAdNAAFoCEdAoxjfitJWenV9lChoBkdAcNdoJRfnfWgHTRgBaAhHQKMZZBj4Hop1fZQoaAZHQHAbipaRp11oB00HAWgIR0CjGd9pItlJdX2UKGgGR0BvY4M8YAKfaAdNJQFoCEdAoxpwm/nGKnV9lChoBkdAPayLdepn6GgHS9FoCEdAoxuAzN2TxHV9lChoBkdAcWvGo73fymgHTUgBaAhHQKMcJm9xp+N1fZQoaAZHQF7mVpsXSBtoB03oA2gIR0CjHrObAk9mdX2UKGgGR0BwF16iTMaCaAdNFwFoCEdAox87EpAlfXV9lChoBkdAcmE1ct5D7mgHTTYBaAhHQKMfz7sv7Fd1fZQoaAZHQHJ7YS13MZBoB00QAWgIR0CjIPJWV/tqdX2UKGgGR0Bxu9nEl3QlaAdNSgFoCEdAoyGNS619fHV9lChoBkdAboT4qwyIpGgHTRoBaAhHQKMiFRjz7Mx1fZQoaAZHQGQAVzp5eJJoB03oA2gIR0CjJJNqpLmIdX2UKGgGR0BPiIsyzollaAdLvWgIR0CjJOt+CsfadX2UKGgGR0BwdsaAFxGUaAdNBwFoCEdAoyaCs6q82HV9lChoBkdAcXYJmukk8mgHTUABaAhHQKMnRSE12q11fZQoaAZHQHEnobCJoCdoB000AWgIR0CjKAglOXVtdX2UKGgGR0ByWLyCnP3SaAdNYAFoCEdAoynzwtrbg3V9lChoBkdAcJf6eXiR4mgHTUoBaAhHQKMq51aGHpN1fZQoaAZHQHHicGs3hn9oB006AWgIR0CjK8Du0CzUdX2UKGgGR0BwnNIiC8ODaAdNAwFoCEdAoyzm1ndwenV9lChoBkdAbHB2g3974WgHTQABaAhHQKMtZCaZx711fZQoaAZHQG3IyRB/qgRoB000AWgIR0CjLfSl3yI6dX2UKGgGR0ByLDUZvUBoaAdNYgFoCEdAoy6a8g6ltXV9lChoBkdAXYbeCTUy6GgHTegDaAhHQKMxPDlYEGJ1fZQoaAZHQD+s8U21lXloB0vAaAhHQKMyNlIVdop1fZQoaAZHQGVzjWTX8O1oB03oA2gIR0CjNMA7HQyAdX2UKGgGR0ByWxQXQ+lkaAdNOAFoCEdAozVW3z+WGHV9lChoBkdAR4mCAc1fmmgHS7ZoCEdAozWqqn3tbHV9lChoBkdAYeaWLxZuAWgHTegDaAhHQKM4H4bCJoF1fZQoaAZHQHF0UfDDTBtoB006AWgIR0CjOLKKpDNRdX2UKGgGR0BP83Td+G47aAdLzmgIR0CjObYcNpdsdX2UKGgGR0BxYFYB/7SBaAdNNAFoCEdAozpKRdQfp3V9lChoBkdAcZKjFhoduGgHTQwBaAhHQKM6xZ13dKx1fZQoaAZHQHDI0F8ohIRoB00nAWgIR0CjO1OerdWRdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 4304,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVOQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQPuO1jD/lgnDzM7OwqfLMJowDaW5jlIoQqc559d9Hlc9OsNuI5sCRGHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -69,7 +69,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQkEy8pmB81KOBdfjF90swX4wDaW5jlIoQPc/L02/E2g7GPbY99UL5RHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF+SNyiAB1YnViLg==",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d83c62c5bd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d83c62c5c60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d83c62c5cf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d83c62c5d80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d83c62c5e10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d83c62c5ea0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d83c62c5f30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d83c62c5fc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d83c62c6050>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d83c62c60e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d83c62c6170>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d83c62c6200>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d83c643b700>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 10240,
25
+ "_total_timesteps": 10000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1718985022765599351,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGa0vb2yMyg/a4trvrGbYb92lGw+Tq/sPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.02400000000000002,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGMpwazeGfyMAWyUS02MAXSUR0Ak2ApazNUwdX2UKGgGR8BZbnN1QqI8aAdLWWgIR0AlA2F36hxpdX2UKGgGR8BXxU0BOpKjaAdLP2gIR0AlIj4YaYNRdX2UKGgGR8B3p8HiWE9MaAdLXWgIR0AlUisXBP9DdX2UKGgGR8BepKwhW5pbaAdLd2gIR0Alk6PKdQO4dX2UKGgGR8BUDcrRSgoPaAdLO2gIR0Alr6E8JUo8dX2UKGgGR8BZfIiosI3SaAdLTWgIR0Al1wVj7Q9idX2UKGgGR8BWF2b9ZRsNaAdLQWgIR0Amq3MINVindX2UKGgGR8BEZu0kWykcaAdLQWgIR0AmzyyUs4DLdX2UKGgGR8BVve7lJYknaAdLRWgIR0Am8tJWeYlZdX2UKGgGR8Bi4Ft0mtyQaAdLVmgIR0AnHbCaZx7zdX2UKGgGR8BaxAmNR3vAaAdLgWgIR0AnYgwoLG70dX2UKGgGR8BmbWykbgjyaAdLZ2gIR0Anm7g88s+WdX2UKGgGR8B0Ip2St/4JaAdLYWgIR0AnysGPgeijdX2UKGgGR8B0PaZ4Oc2BaAdLZWgIR0An+wnH/95ydX2UKGgGR8Btf2X9itq6aAdLUGgIR0AoJ0knkT6BdX2UKGgGR8BvT/u9eyAyaAdLd2gIR0AoYQ3gk1MudX2UKGgGR8BZiy9ugpSaaAdLVGgIR0AoiSZBsyi3dX2UKGgGR8Bvb1vS+g14aAdLS2gIR0ApUXJHRTjvdX2UKGgGR8BxAQGcFyJbaAdLZmgIR0ApguV5a/yodX2UKGgGR8BaJenuRcNZaAdLTmgIR0ApsDjBEa2ndX2UKGgGR8Bek+izsyBTaAdLYWgIR0Ap38AJb+tKdX2UKGgGR8BKk+W4Vh1DaAdLP2gIR0Ap/tfG+9J0dX2UKGgGR8Bw7t+iJwbVaAdLWGgIR0AqKqYJE6T4dX2UKGgGR8B88bfQ8fV7aAdLd2gIR0AqZk6Lfk3kdX2UKGgGR8ByNKHck+otaAdLZ2gIR0AqmfA9FF2FdX2UKGgGR0AWhBqsU7CBaAdLQ2gIR0Aqu64Ds+mndX2UKGgGR8B0y4al1r6+aAdLbGgIR0Aq85yU9pyqdX2UKGgGR8BhokFhXr+paAdLdWgIR0ArLl/YraufdX2UKGgGR8BhU60hNdqtaAdLhmgIR0AsHnLaEi+tdX2UKGgGR8AvCZRbbDdhaAdLYmgIR0AsTzoUzsQedX2UKGgGR8BMkJIDoyKvaAdLd2gIR0AsjCojv/ipdX2UKGgGR8BdT5aA4GUwaAdLZGgIR0Asuuyu6mO3dX2UKGgGR8BhLCjWTX8PaAdLUmgIR0As5JoTPBzndX2UKGgGR8BiHFnTRYzSaAdLR2gIR0AtBlYEGJN1dX2UKGgGR8Bwok8JUo8ZaAdLU2gIR0AtNBWxQizLdX2UKGgGR8BGiqesgdOqaAdLW2gIR0AtYT/Q0GeMdX2UKGgGR8Bm1M+gUUO/aAdLaWgIR0AtlQ+EAYHgdX2UKGgGR8BnYlcnmaH9aAdLf2gIR0At17N0NjLCdX2UKGgGR8BpYxb8m8dxaAdLZ2gIR0AuqIMSbpeNdX2UKGgGR8BawYXKr7wbaAdLZ2gIR0Au29qUNayKdX2UKGgGR8Bba4dU83dcaAdLb2gIR0AvFCemNzbOdX2UKGgGR8BY85e3QUpNaAdLZmgIR0AvR5uZTho/dX2UKGgGR8BTAk74i5d4aAdLOmgIR0AvZE2pAD7qdX2UKGgGR8Bc3K5f+jubaAdLVWgIR0AvjuXNTtLMdX2UKGgGR8B0e8cR15jZaAdLbWgIR0AvyUaAFxGUdX2UKGgGR8BZaLEDQqqfaAdLXGgIR0Av+O+ZgG8mdX2UKGgGR8BrjrlzU7SzaAdLZ2gIR0AwFpD/lyR0dX2UKGgGR8Be3vXPJJXhaAdLbmgIR0AwMlhPTG5udX2UKGgGR8BZVs/hVENOaAdLXmgIR0AwSKpT/ACXdX2UKGgGR8BttRgqmTC+aAdLnWgIR0Aw2Q66reZYdX2UKGgGR8BdEeE/SpiraAdLSWgIR0Aw8nzg/C66dX2UKGgGR8BgJ4ob4rSWaAdLf2gIR0AxIWmxdIGydX2UKGgGR8BpF1nVXmvGaAdLq2gIR0AxWjqOcUdrdX2UKGgGR8Ba6k/nnuAqaAdLaWgIR0AxellK9PDYdX2UKGgGR8BSwhoduHeraAdLOmgIR0Axjh2GIsRQdX2UKGgGR8Bq89ph4MWoaAdLamgIR0AxsoZydWhidX2UKGgGR8B3p1hpg1FZaAdLYmgIR0Ax0f1pTMq0dX2UKGgGR8BTfOdbxEv1aAdLRmgIR0Ax58dxQzk7dX2UKGgGR8BdZhJqZc9oaAdLbGgIR0Ayf8+RoysTdX2UKGgGR8BfEJR8+iaiaAdLcWgIR0Ayqz0Yj0L/dX2UKGgGR8BurTmU4aP0aAdLZ2gIR0AyzyI55qubdX2UKGgGR8B8gDEjxCpnaAdLZWgIR0Ay8rcTJyQxdX2UKGgGR8BqUDSCvovBaAdLSGgIR0AzD2CuloDgdX2UKGgGR8A6NdRiw0O3aAdLSmgIR0AzKRYRujyndX2UKGgGR8BuZT8Nx2jgaAdLaGgIR0AzSt2cJ+lTdX2UKGgGR8BTgjgEU0vXaAdLQmgIR0AzYRKYiPhidX2UKGgGR8BzC7gTAWSEaAdLe2gIR0AzjLlmvnr6dX2UKGgGR8BTm6BZpztDaAdLQGgIR0AzoraufVZtdX2UKGgGR8BuXPG2kSElaAdLhWgIR0Az1gqmTC+DdX2UKGgGR8BlgtPLxI8RaAdLd2gIR0A0gDM/yGzsdX2UKGgGR8Bw/4QFs54oaAdLeGgIR0A0p0aZQYUGdX2UKGgGR8Bibcjopx3naAdLUWgIR0A0u/sVtXPrdX2UKGgGR8BxKqvQnhKlaAdLY2gIR0A01LwnYxtYdX2UKGgGR8BWtoGY8dPtaAdLRWgIR0A05Vx0dRzjdX2UKGgGR8Be3d7a7EpBaAdLYWgIR0A0/Vv/BFd+dX2UKGgGR8BeULLhaTwEaAdLRmgIR0A1DiUxEfDDdX2UKGgGR8BjnA9q1w5vaAdLbWgIR0A1KLXtjTa1dX2UKGgGR8B2+weii7CjaAdLZWgIR0A1RKhL5AQhdX2UKGgGR8BeBqFmFrVOaAdLWmgIR0A1WuU2UB4mdX2UKGgGR8BMO+xW1c+raAdLQ2gIR0A1a8r7O3UhdX2UKGgGR8B0i/WMCLdfaAdLa2gIR0A12hqj8DSxdX2UKGgGR8BhzX1J17pnaAdLbmgIR0A19fDDTBqLdX2UKGgGR8Beb48U21lYaAdLY2gIR0A2DZLZi/fwdX2UKGgGR8BgX5vUBnzyaAdLYGgIR0A2Jbhm5DqodX2UKGgGR8Bv1cMy8BdVaAdLamgIR0A2QdT5wfhddX2UKGgGR8BrMsmhM8HOaAdLgWgIR0A2YWtlqagFdX2UKGgGR8BgNTHEMspYaAdLTGgIR0A2dFj/dZaFdX2UKGgGR8BWbum78Nx3aAdLYGgIR0A2i46fapPzdX2UKGgGR8Bnpg2dd3SsaAdLnGgIR0A2sVFx4ptrdX2UKGgGR8Bxa9LoOhCdaAdLZ2gIR0A3HWN3np0PdX2UKGgGR8BiRvcQAdXDaAdLYWgIR0A3Np8WsRxtdX2UKGgGR8BnQP5aePJaaAdLa2gIR0A3VUmD15B1dX2UKGgGR8B2E17MPjGUaAdLZWgIR0A3b8scyWRjdX2UKGgGR8Bl+ls+FDfFaAdLUGgIR0A3g/Efkmx/dX2UKGgGR8B7s07q6e5GaAdLfGgIR0A3o8274BV/dX2UKGgGR8B3C5k9U0emaAdLZGgIR0A3vahpQDV6dX2UKGgGR8BunxLPD50saAdLjGgIR0A34GgSOBDpdX2UKGgGR8BZ75YYBNmEaAdLV2gIR0A39T0xubZwdX2UKGgGR8BlWqosI3R5aAdLaGgIR0A4DnUDuBtldWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 40,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQIy71q3tGEgwsiPd2TtipU4wDaW5jlIoRAQ2CbDyFbNUUd2+Y+QTbiQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRceotdzOYAr9h9bA6jNthqQCMA2luY5SKEBE1FOBupsua0/Vrac4m+VV1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBUdn0+8AdWJ1Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dabc26769a715cb75015f56f5724ccc4c19937d73095d13ecccc940c59ca13cd
3
  size 87978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f5d67dd46396f679c5448111b6371a82c59d538c2615e49a01035afca4d600f
3
  size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08818462f989e5dd618d8da68da0113297729bac2a2e53437ef8625d088947c9
3
  size 43634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51638f52e7640631d0d5005bc504b48b35f958779a2cedd0b9e7d20356e8d27d
3
  size 43634
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 220.6937436994745, "std_reward": 86.13591137058586, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-21T13:06:28.905554"}
 
1
+ {"mean_reward": -1249.7161136225798, "std_reward": 687.8153383864704, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-21T15:53:53.427036"}